
Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 1

08-6329-API-ZCH66
JANUARY 10, 2008

en

3.4

Application Programmers
Interface for aacPlus Enhanced

Decoder

ABSTRACT:

Application Programmers Interface for aacPlus Enhanced Decoder
KEYWORDS:

Multimedia codecs, AAC
APPROVED:

Shang Shidong

TM

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 2

Revision History

VERSION DATE AUTHOR CHANGE DESCRIPTION

0.1 29-Mar-2005 Ashok Kumar Initial Draft

1.0 30-Mar-2005 Ashok Kumar Added review comments

1.1 29-Jun-2005 Webber Wang Add SBR decoder config and table init for
relocation; Change some names for aacPlus
project.

1.2 07-Jul-2005 Ashok Kumar Reviewed and updated

2.0 02-Sep-2005 Ashok Kumar Added review comments and updated
performance number

2.1 20-Jan-2006 Kusuma Modified structure names exposed in the API

3.0 06-Feb-2006 Lauren Post Using new format

3.1 13-Oct-2006 Shyam
Krishnan M

Raw bit stream support.

3.2 19-Oct-2007 Fan Zhang Restructured API between library and application
so that the application uses one unified
aacplus_dec_interface.h

3.3 12-Nov-2007 Bing Song Support 3 channels AAC LC bitstream

3.4 10-Jan-2008 Bing Song Support up to 5.1 channels and interleave output
samples

4.0 28-Apr-09 Lyon Wang Support invoke AAC LC lib as part of AAC plus

4.1 22-May-09 Lyon Wang Change SBR decode frame interface

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 3

Table of Contents
• 1. Introduction 4

1.1 Purpose 4
1.2 Scope 4
1.3 Audience Description 4
1.4 References 4

1.4.1 Standards 4
1.4.2 General References 5
1.4.3 Freescale Multimedia References 5

1.5 Definitions, Acronyms, and Abbreviations 5
1.6 Document Location 6
• 2 API Description 7

Step 1 (Optional): Get Version Information 7
Step 2: Allocate memory for Decoder parameter structure 8
Step 3: Get the decoder memory requirements 10
Step 4: Allocate Data Memory for the decoder 11
Step 5: Get the header information 12

Section A: Parsing ADIF header 12
Section B: Initialization for raw bit stream 15

Step 6: Memory allocation for input buffer 16
Step 7: Initialization routine 16
Step 8: Memory allocation for output buffer 17
Step 9: Call the frame decode routine 17
Step 10: Free memory 20

2.1.1 app_swap_buffers_aacp_dec function usage 20
• Appendix A Debug Logs Error! Bookmark not defined.

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 4

1. Introduction

1.1 Purpose
This document gives the details of the application programmer’s interface of aacPlus decoder. The
aacPlus decoder takes the parsed raw aacPlus bit stream as the input and generates audio PCM
samples. The calling application needs to parse and provide header information required for
decoding of frame.

The decoder is designed as a set of library routines that read the bit-stream from the input buffers
and write the decoded output to the output buffers. The decoder implementation currently supports
decoding of MPEG-4 AAC (Advanced Audio Coding) LC (low complexity) (level 1 and 2 AAC
profile) and aacPlus (level 2 and 3 of High Efficiency (HE) AAC profile) bitstream. The decoder
modules are OS independent and do not assume any underlying drivers.

1.2 Scope
This document describes only the functional interface of the aacPlus decoder. It does not describe
the internal design of the decoder. Specifically, it describes only those functions by which a
software module can use the decoder.

1.3 Audience Description
The reader is expected to have basic understanding of Audio Signal processing and aacPlus
decoding. The intended audience for this document is the development community who wish to
use the aacPlus decoder in their systems.

1.4 References
1.4.1 Standards

• ISO/IEC 13818-7:1997 Information technology -- Generic coding of moving pictures and
associated audio information -- Part 7 (popularly known as MPEG-2 AAC)

• ISO/IEC 13818-4:1997 Information technology -- Generic coding of moving pictures and
associated audio information -- Part 4 (compliance testing)

• ISO/IEC 14496-3:2001(E) Information technology -- Coding of audio-visual objects -- Part
3: Audio.

• ISO/IEC 14496-4:2000, Information technology -- Coding of audio-visual objects -- Part 4:
Conformance testing.

• ISO/IEC 14496-3:2001 Amendment 1 -- WD Text for Backward Compatible Bandwidth
Extension for General Audio Coding.

• Coding Technology aacPlus Decoder Certification Document, Version 2.3

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 5

1.4.2 General References
• Ted Painter and Andreas Spanias, “Perceptual Coding of Digital Audio”, Proc. IEEE, vol-

88, no.4, April 2000
• H.S.Malvar, “Lapped transforms for efficient subband/transform coding”, IEEE trans.

ASSP, June 1990.
• Seymour Shlien, “The Modulated Lapped Transform, Its Time-Varying Forms and Its

Applications to Audio Coding Standards.”
• “A Tutorial on MPEG/Audio compression” by Davis Pan
• Martin Wolters, Kristofer Kjorling2, Daniel Homm and Heiko Purnhagen, “A closer look

into MPEG-4 High Efficiency AAC”, AES 115th Convention, 2003.

1.4.3 Freescale Multimedia References
• AAC Plus Enhanced Application Programming Interface - aacplus_dec_api.doc
• AAC Plus Enhanced Requirements Book - aacplus_dec_reqb.doc
• AAC Plus Enhanced Test Plan - aacplus_dec_test_plan.doc
• AAC Plus Enhanced Release notes - aacplus_dec_release_notes.doc
• AAC Plus Enhanced Test Results – aacplus_dec_test_results.doc
• AAC Plus Enhanced Performance Results – aacplus_dec_perf_results.doc
• AAC Decoder API doc Appendix C on Header data extraction – aac_dec_api.doc
• AAC Plus Enhanced Interface Header – aacplus_dec_interface.h
• AAC Plus Enhanced Application Code - aacplus_main.c

1.5 Definitions, Acronyms, and Abbreviations
TERM/ACRONYM DEFINITION

AAC Advanced Audio Coding

aacPlus AAC low complexity plus SBR decoder

aacPlus V2 AAC low complexity plus SBR plus parametric stereo decoder

ADIF Audio_Data_Interchange_Format

ADTS Audio_Data_Transport_Stream

API Application Programming Interface

ARM Advanced RISC Machine

FSL Freescale

HE-AAC High Efficiency AAC

IEC International Electro-technical Commission

ISO International Organization for Standardization

LC Low Complexity

MDCT Modified Discrete Cosine Transform

MPEG Moving Pictures Expert Group

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 6

PCM Pulse Code Modulation

PNS Perceptual Noise Substitution

PS Parametric Stereo

SBR Spectral Band Replication

RVDS ARM RealView Development Suite

UNIX Linux PC x/86 C-reference binaries

TBD To be decided

1.6 Document Location
docs/aacplus_dec

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 7

2 API Description
This section describes the steps followed by the application to call the aacPlus decoder. During
each step the data structures and functions used will be explained. Pseudo code is given at the end
of each step. The member variables inside the structures are prefixed as aacpd_ or app_ to indicate
if that member variable needs to be initialized by the decoder or application.

Step 1 (Optional): Get Version Information

This function returns the codec library version information details. It can be called at any
time and it provides the library’s information: Component name, supported ARM family,
Version Number, supported OS, build date and time and so on.

C prototype:
const char * AACPDCodecVersionInfo ();

Arguments:

• None.

Return value:

• const char * - The pointer to the constant char string of the version
information string.

Description of the version information

It is defined as :
#define SEPARATOR " "
#define BASELINE_SHORT_NAME "AACPD_ARM_03.00.00"

#ifdef __WINCE
#define OS_NAME "_WINCE"
#else
#define OS_NAME ""
#endif

#ifdef DEMO_VERSION
#define CODEC_RELEASE_TYPE "_DEMO"
#else
#define CODEC_RELEASE_TYPE ""
#endif

/* user define suffix */
#define VERSION_STR_SUFFIX ""

#define CODEC_VERSION_STR \
 (BASELINE_SHORT_NAME OS_NAME CODEC_RELEASE_TYPE \
 SEPARATOR VERSION_STR_SUFFIX \
 SEPARATOR "build on" \
 SEPARATOR __DATE__ SEPARATOR __TIME__)

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 8

For instance:
“AACPD_ARM_03.00.00 build on May 14 2008 16:21:50”
is returned by calling AACPDCodecVersionInfo (), meaning AAC-Plus decoder for ARM11,
version 2.01.00.

Example pseudo code for the memory information request

 {
 // Output the AAC Decoder Version Info
 printf("%s \n", aacd_decode_versionInfo());
 }

Step 2: Allocate memory for Decoder parameter
structure

The application allocates memory for the structure mentioned below. This structure contains
the decoder parameters and memory information structures.

/* Decoder parameter structure */
typedef struct AACPD_Decoder_Config_struct
{
 AACPD_Mem_Alloc_Info aacpd_mem_info;
 AACPD_Void *aacpd_decode_info_struct_ptr;
 AACPD_ UINT8 *app_initialized_data_start;
 AACPD_INT8

(*app_swap_buf)(AACPD_UINT8 **new_buf_ptr,
 AACPD_INT32 *new_buf_len,
 struct AACPD_Decoder_Config_struct *dec_config);

 ACPD_UINT8 num_pcm_bits;
 AACPD_UINT8 num_pcm_bits; /* Specifies number of Bits in the
PCM.(16 or 24)*/
 AACPD_Block_Params *params;
 SBRD_Decoder_Config sbrd_dec_config;
 void *pContext;
} AACPD_Decoder_Config;

Description of the decoder parameter structure AACPD_Decoder_Config
aacpd_mem_info
 This is a memory information structure. The application needs to call the function
 aacpd_query_dec_mem to get the memory requirements from the decoder. The decoder
 will fill this structure with its memory requirements. This will be discussed in step 2.
aacpd_decode_info_struct_ptr
 This is a void pointer. This will be initialized by the decoder during the initialization
 routine. This will then be a pointer to a structure which contains the pointers to tables,
 buffers and symbols used by the decoder.
app_initialized_data_start
 The application has to assign this pointer with the start of the array of table pointers. The
 array of table pointers should have been initialized with the starting addresses of the
 tables used for aacPlus decoder. The starting addresses of the tables used is given in the
 header file aacpd_tables.h

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 9

app_swap_buf
 Function pointer to swap buffers. The application has to initialize this pointer.
num_pcm_bits
 The application has to indicate the decoder about required output precision. The decoder
can output the PCM samples either as 16 bit samples or as 24 bit samples. Currently 16bit PCM
output samples are used.
params
 This is a pointer to a structure containing the header information. The header is parsed by
 the application and this structure is filled with the appropriate header information. This
 structure needs to be updated whenever header is parsed. This will be discussed in step 4
sbrd_dec_config
 This is a SBR Decoder config structure. The application will use the elements in this
 structure to decode the sbr data.
pContext
 Used to indicate instrance.

/* SBR Decoder parameter structure */
typedef struct
{

AACPD_INT32 sbrd_down_sample;
 /*flag to indicate SBR down sample mode*/
AACPD_INT32 sbrd_stereo_downmix;
 /* flag related to stereo down mix */

}SBRD_Decoder_Config;

Description of SBR Decoder parameter SBRD_Decoder_Config
sbrd_down_sample

This is flag used to enable/disable downsampled mode of SBR. The application needs to
initialize this to zero as this is not supported.

sbrd_stereo_downmix
This flag is used to enable/disable stereo to mono downmix. The application needs to
initialize this to zero as this is not supported.

Example pseudo code for this step:

/* Allocate memory for the decoder parameter */
 dec_config = (AACPD_Decoder_Config *)
 alloc (sizeof(AACPD_Decoder_Config);

/* Initialize aptable with the start address of all the tables used
 for aacPlus decoder. The start addresses of all the tables are
 available in the header file aacpd_tables.h */

/* Request the output PCM samples to be in the 16bit format/24bit format
 dec_config->num_pcm_bits = AACPD_16_BIT_OUTPUT;

/* Assign swap-buffer function to the swap buffer function pointer,
 function app_swap_buffers_aacp_dec need to be implemented by
 application */
 dec_config->app_swap_buf = app_swap_buffers_aacp_dec;

/* Fill up the Block Params field in decoder config, to be used by adif
 or adts header processing */
 dec_config->params = &BlockParams;

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 10

Step 3: Get the decoder memory requirements
The aacPlus decoder does not perform any dynamic memory allocation. The application calls the
function aacpd_query_dec_mem to get the decoder memory requirements. This function must be
called before any other decoder functions are invoked.

C prototype
AACPD_RET_TYPE aacpd_query_dec_mem (AACPD_Decoder_config * dec_config);

Arguments

• dec_config - pointer to decoder configuration structure.

Return value

• AACPD_ERROR_NO_ERROR - Memory query successful.
• Other codes - Error (For other error codes refer to appendix).

This function populates the memory information structure, which is described below:

Memory information structure array

typedef struct
{
 /* Number of valid memory requests */
 AACPD_INT32 aacpd_num_reqs;
 AACPD_Mem_Alloc_Info_Sub mem_info_sub[AACPD_MAX_NUM_MEM_REQS];
}AACPD_Mem_Alloc_Info;

Description of the structure AACPD_Mem_Alloc_Info
aacpd_num_reqs
 The number of memory chunks requested by the decoder.
mem_info_sub
 This structure contains each chunk’s memory configuration parameters.

Memory configuration Structure

typedef struct
{
 AACPD_INT32 aacpd_size; /* Size in bytes */

AACPD_INT32 aacpd_type; /* Memory type Fast or Slow */
AACPD_MEM_DESC aacpd_mem_desc;

/* Flag to indicate Static/Scratch
 memory */
AACPD_MEMALIGN aacpd_mem_align; /* required alignment */
AACPD_MEM_PRIORITY aacpd_priority;

/* In case of fast Memory type, specify the priority */
 AACPD_Void *app_base_ptr; /* Pointer to the base memory, which
 will be allocated and filled by
 the application */
} AACPD_Mem_Alloc_Info_sub

Description of the structure AACPD_Mem_Alloc_Info_sub

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 11

aacpd_size
 This indicates size of chunk in bytes.
aacpd_type
 The type of the memory indicates if the requested chunk of memory needs to be allocated
 in external or internal memory. The type of memory can be SLOW_MEMORY or
 external memory, FAST_MEMORY or internal memory. In targets where there is no
 internal memory, the application can allocate memory in external memory.
 (Note: If the decoder requests for a FAST_MEMORY for which the application
 allocates a SLOW_MEMORY, the decoder will still decode, but the performance (MHz)
 will suffer.)
aacpd_mem_des
 The memory description field indicates whether requested chunk of memory is static or
 scratch.
aacpd_mem_align
 This indicates requirement alignment in bytes for requested memory. It can be 1, 2
 and 4 bytes.
aacpd_priority
 In case, if the decoder requests for multiple memory chunks in the fast memory, the
 priority indicates the order in which the application has to prioritize placing the requested
 chunks in fast memory
app_base_ptr
 This will be initialized by the application. The application will allocate the memory for
 each chunk depending on the requested size and the type, and then assign the base
 address of this chunk of memory to app_base_ptr. The application should allocate the
 memory that is aligned to a 4 byte boundary in any case.

Example pseudo code for the memory information request

/* Query for memory */
retval = aacpd_query_dec_mem (&dec_config);

if (retval != AACPD_ERROR_NO_ERROR)
 {
 printf("Failed to get the memory configuration for the
decoder\n");
 aacd_free(dec_config);
 return 2;
 }

Step 4: Allocate Data Memory for the decoder
In this step the application allocates the memory as required by the aacPlus decoder and fills up the
base memory pointer ‘app_base_ptr’ of ‘AACPD_Mem_Alloc_Info_sub’ structure for each chunk
of memory requested by the decoder.

Example pseudo code for the memory allocation and filling the base memory pointer by the
application

AACPD_Mem_Alloc_Info_sub *mem;

/* Number of memory chunks requested by the decoder */
nr = dec_config->aacpd_mem_info.aacpd_num_reqs;

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 12

for(i = 0; i < nr; i++)
{
 mem = &(dec_config-> aacpd_mem_info.mem_info_sub[i]);
 if (mem->aacpd_type == FAST_MEMORY)
 {
 /* this function allocates memory in internal memory as per
 requested alignment (mem->aacpd_mem_align) */
 mem->app_base_ptr = alloc_fast(mem->aacpd_size);

}
 else
 {
 /* this function allocates memory in external memory as per
 requested alignment (mem->aacpd_mem_align) */
 mem->app_base_ptr = alloc_slow(mem->aacpd_size);

}
}

Step 5: Get the header information
Section A: Parsing ADIF header

The application does the parsing of the header. The header structure which is required by the
decoder to process the raw data is updated by the application. Please refer for more details about the
structures given below. (The header parse function will also defined by application).

Header information structure:

typedef struct
{
 AACPD_INT32 num_pce;
 AACPD_ProgConfig *pce;
 AACPD_INT32 ChannelConfig;
 AACPD_INT32 SamplingFreqIndex;
 AACPD_INT32 BitstreamType;
 AACPD_INT32 BitRate;
 AACPD_INT32 BufferFullness; /*No. of bits in decoder buffer after
 decoding first raw_data_block */
 AACPD_INT32 ProtectionAbsent;
 AACPD_INT32 CrcCheck;
#ifdef OLD_FORMAT_ADTS_HEADER
 AACPD_INT32 Flush_LEN_EMPHASIS_Bits;
#endif
} AACPD_Block_Params;

Description of the structure AACPD_Block_Params
num_pce
 Number of program config elements in the header. If there are no program config
 elements in the header, num_pce should be set to zero.
pce
 This is pointer to the program configuration structure. (Details of Program config
 structure is given below).
ChannelConfig

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 13

 Channel Configuration parameter can take values in the range 0-7. Each value specified
 indicates preset channel-to-speaker mapping defined in the standard. If num_pce is
 greater than zero, then ChannelConfig will be ignored as pce will be used.
SamplingFreqIndex
 This is an index into an array of valid sampling-frequency values. This will be ignored if
 num_pce is greater than zero.
BitstreamType
 0 = Constant bit rate (CBR)
 1 = Variable bit rate (VBR)
BitRate
 If BitstreamType = CBR, then it indicates actual bit rate
 If BitstreamType = VBR, then it indicates peak bit rate if not equal to zero
 If BitstreamType = VBR and BitRate = 0, then peak bit rate is unknown.
BufferFullness
 This indicates number of bits remaining in the encoder buffer after encoding the first
 raw_data_block in the frame. This will be ignored if num_pce is greater than zero.
ProtectionAbsent
 If ProtectionAbsent =1, then CrcCheck value will not be present in the stream
 If ProtectionAbsent =0, then CrcCheck value will be present in the stream and CrcCheck
 will be done by the decoder.
CrcCheck
 32bit field used to perform CRC check by the decoder.
Flush_LEN_EMPHASIS_Bits
 This is used only for the MPEG4 streams with old format ADTS headers
 0: If byte alignment is already existing at the end of the header
 1: If there is no byte alignment at the end of the header. If this is 1, decoder flushes 2 bits
 before decoding every frame.

PCE Structure

 typedef struct
 {
 AACPD_INT32 profile;
 AACPD_INT32 sampling_rate_idx;
 AACPD_EleList front;
 AACPD_EleList side;
 AACPD_EleList back;
 AACPD_EleList lfe;
 AACPD_EleList data;
 AACPD_EleList coupling;
 AACPD_MIXdown mono_mix;
 AACPD_MIXdown stereo_mix;
 AACPD_MIXdown matrix_mix;
 AACPD_INT8 comments[1];
 AACPD_INT32 buffer_fullness;
 AACPD_INT32 tag;
 }AACPD_ProgConfig;

Description of the structure AACPD_ProgConfig
profile
 This should always be set to 1 (MPEG4 AAC Low Complexity profile)
sampling_rate_idx
 This is an index into an array of valid sampling-frequency values

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 14

front
 This is structure containing information about front channel elements.
side
 This is structure containing information about side channel elements.
back
 This is structure containing information about back channel elements.
lfe
 This is structure containing information about low frequency enhancement channel
 elements.
data
 This is structure containing information about the associated data elements for this
 program
coupling
 This is structure containing information about the coupling channel elements.
mono_mix
 This is structure containing information about the mono mixdown element
Stereo_mix
 This is structure containing information about the stereo mixdown element
Matrix_mix
 This is structure containing information about the matrix mixdown element.
Comments
 General information
Buffer_fullness
 This indicates number of bits remaining in the encoder buffer after encoding the first
 raw_data_block in the frame.
tag
 The ID of the PCE

EleList structure:

 typedef struct
 {
 AACPD_INT32 num_ele;
 AACPD_INT32 ele_is_cpe[16];
 AACPD_INT32 ele_tag[16];
 } AACPD_EleList;

Description of the structure AACPD_EleList
num_ele
 Number of elements in the channel
ele_is_cpe
 This indicates whether the element is channel_pair or not
ele_tag
 ID of channel element

Mixdown structure:

 typedef struct
 {
 AACPD_INT32 present;
 AACPD_INT32 ele_tag;
 AACPD_INT32 pseudo_enab;
 } AACPD_MIXdown;

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 15

Description of the structure AACPD_MIXdown
present
 This indicates if the mix_down element is present or not
ele_tag
 This indicates the number of the mix_down element
pseudo_enab
 This is defined only for matrix mix-down and indicates if pseudo-surround is enabled or
 not.

Section B: Initialization for raw bit stream

Whenever the input is raw bit stream, we initialize the adts header structure to default values except
for sampling frequency and channel configuration. This initialization is done only once.

ADTS structure:

typedef struct
{
 int syncword;
 int id;
 int layer;
 int protection_abs;
 int profile;
 int sampling_freq_idx;
 int private_bit;
 int channel_config;
 int original_copy;
 int home;
 int copyright_id_bit;
 int copyright_id_start;
 int frame_length;
 int adts_buffer_fullness;
 int num_of_rdb;
 int crc_check;
} ADTS_Header;

Initialization of the structure shown above for raw bit stream decoding

Id=0;
Layer=0;
protection_abs=1;
profile=1;
sampling_freq_idx
 Index derived from the sampling frequency. Sampling frequency
needs to be given as an input parameter.
private_bit=0;
channel_config;
 Represents mono(1) or stereo(2) bit stream. This is also an
input parameter.
original_copy=0;
home=0;

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 16

copyright_id_bit=0;
copyright_id_start=0;
frame_length=0;
adts_buffer_fullness=0;
num_of_rdb=0;

Step 6: Memory allocation for input buffer
The application has to allocate the memory needed for the input buffer. It is desirable to have the
input buffer allocated in FAST_MEMORY, as this may improve the performance (MHz) of the
decoder. There is no restriction on the size of the input buffer to be given to the decoder. The
recommended minimum size would be 2Kbytes. The decoder, whenever it needs the aacPlus bit-
stream, shall call the function app_swap_buffers_aacp_dec internally from the function
aacp_decode_frame.

app_swap_buffers_aacp_dec should be implemented by the application. The application might
have different techniques to implement this function. Sample code is given in section 2.1.1

Example pseudo code for allocating the input buffer

/* Allocate memory for input buffer */
 input_buf = alloc_fast(AACPD_INPUT_BUFFER_SIZE);

Step 7: Initialization routine
All initializations required for the decoder are done in aacpd_decode_init. This function must be
called before the main decoder function is called.

C prototype:
AACD_RET_TYPE aacd_decode_init (AACPD_Decoder_Config *);
AACD_RET_TYPE SBRD_decode_frame(
 AACD_Decoder_Config *dec_config,
 AACD_Decoder_info *dec_info,
 AACD_INT32 *out_buf);
Arguments:

• Pointer to decoder configuration structure

Return value:

• AACD_ERROR_NO_ERROR - Initialization successful.
• Other codes - Initialization Error

Example pseudo code for calling the initialization routine of the decoder

/* Initialize the AAC decoder. */
retval = aacd_decode_init (dec_config);
if (retval != AACD_ERROR_NO_ERROR)
 return 1;
retval = SBRD_decoder_init(dec_config);
if (retval != AACD_ERROR_NO_ERROR)
 return 1;

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 17

Step 8: Memory allocation for output buffer
The application has to allocate memory for the output buffers to hold the decoded stereo PCM
samples for a maximum of one frame size. The pointer to this output buffer needs to be passed to
the aacpd_decode_frame function. The application can allocate memory for output buffer in
external memory using alloc_slow. Allocating memory in internal memory using alloc_fast will
improve the performance (MHz) of the decoder marginally. It would be desirable to allocate the
buffer in the slow memory.

Example pseudo code for allocating memory for output buffer

/* allocate memory for output buffer */
 outbuf = alloc_slow(num_of_channels * AACP_FRAME_SIZE);

In the example code, the output buffer has been declared as a two dimensional array

 AACPD_INT32 outbuf[num_of_channels * AACP_FRAME_SIZE];

Note:
The current implementation of aacPlus decoder supports up to 5.1 channels AAC LC bitstream and
stereo AAC PLUS bitstream. The output samples have been interleaved.

Step 9: Call the frame decode routine
The main aacPlus decoder function is aacpd_decode_frame. This function decodes the aacPlus raw
bit stream of input buffer to generate one frame of decoder output per channel in every call. If the
input buffer does not contain enough data for one frame, then only the call back function
app_swap_buffers_aacp_dec will be called to get more input.

The output buffer is first filled with left channel samples and then with the right channel, samples.
For mono streams, the decoder fills only the left channel samples and leaves the right channel
samples unfilled.

The decoder fills up the following AACD_Decoder_Info structure:

typedef struct
{
 AACPD_UINT32 aacpd_sampling_frequency;

/* Sampling frequency of the current frame in KHz */
AACPD_UINT32 aacpd_num_channels;

/* Number of channels decoded in current frame */
 AACPD_UINT32 aacpd_frame_size;

/* Number of stereo samples being output for this frame */
 AACPD_UINT32 aacpd_len;
 AACPD_UINT32 aacpd_bit_rate; /* bit rate */
 AACPD_UINT32 BitsInBlock;

/* Decoder outputs the number of bits in the raw data block
decoded. This can be used by the application to keep track of
the bitstream */

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 18

 AACPD_INT8 ch_is_present[Chans]; /* flag to indicate presence of
each channel */

AACPD_UINT32 AACD_bno; /* frame number, updated after each
call to aacpd_decode_frame*/

} AACD_Decoder_Info;

If the bit stream has errors, the decoder will return the corresponding error (mentioned in the
appendix).

C prototype:

AACD_RET_TYPE aacpd_decode_frame (AACD_Decoder_Config *dec_config,
 AACD_Decoder_Info *dec_info,
 AACD_INT32 *output_buffer,
 AACD_INT8 * inbuf, AACPD_INT32 buf_len);

Arguments:
• dec_config Decoder parameter structure pointer
• dec_info Decoder output parameter pointer
• output_buffer Pointer to the output buffer to hold the decoded samples
• inbuf Pointer to the input buffer containing the raw data block
• buf_len Length of the input buffer

Return value:

• AACD_ERROR_NO_ERROR indicates decoding was successful.
• Others indicates error
AACD_RET_TYPE SBRD_decode_frame(AACD_Decoder_Config *dec_config,
 AACD_Decoder_info *dec_info,
 AACD_INT32 *out_buf

SBR_FRAME_TYPE * sbr_frame_type);
Arguments:

• dec_config Decoder parameter structure pointer
• dec_info Decoder output parameter pointer
• out_buf Pointer to the output buffer to hold the decoded samples
• sbr_frame_type Indicate if current frame contains SBR information

Return value:

• AACD_ERROR_NO_ERROR indicates decoding was successful.
• Others indicates error

typedef enum
{
 NO_SBR_FRAME, /* indicate no sbr information */
 SBR_FRAME /* indicate sbr information contained */
}SBR_FRAME_TYPE;

When the decoder encounters the end of bit-stream, the application comes out of the loop. In case
of error while decoding the current frame, the application can just ignore the frame without
processing the output samples by continuing the loop.
In case of mono bit-streams, as mentioned earlier, the decoder fills only the left channel. It is the
responsibility of the application to use it accordingly. One example is the case in which the

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 19

application can copy the left channel samples into right channel. This is illustrated in the example
code below.

Example pseudo code for calling the main decode routine of the decoder

AACPD_Decoder_Info dec_info;
AACPD_INT8 inbuf;
AACPD_UINT32 len;

while (TRUE)
{

/* Decode one frame */
/* The decoded parameters for this frame are available in the
 structure AACPD_Decoder_info */

len = AACPD_INPUT_BUFFER_SIZE;

/* Get the input raw data block */
read (inbuf,len)

 Retval = aacd_decode_frame (dec_config, &dec_info, outbuf, inbuf,
 len);
 if (retval == AACD_ERROR_EOF)
 {
 /* Reached the end of bit-stream */
 break;
 }
 Retval = SBRD_decode_frame (dec_config, &dec_info, outbuf,
&sbr_frame_type));

 if (retval != AACD_ERROR_NO_ERROR)
 {
 /* Invalid frame encountered, do not output */
 continue;
 }

 /* If mono, copy the left channel to the right channel. */
 if (dec_info.aacpd_num_channels == 1)
 {
 int i;
 for (i = 0; i < dec_info.aacpd_frame_size; i++)

 outbuf [AACP_FRAME_SIZE+i] = outbuf [i];
 }

/* The output frame is ready for use. Decoding of the next frame
 * should start only if the previous output frame has been fully
 * used by the application.
 */
 /* audio_output_frame () is an application function that outputs

the
 decoded samples to the output port/device. This function is not
 given in this document.
*/
 audio_output_frame(outbuf, 2*AACP_FRAME_SIZE);

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 20

}

Step 10: Free memory
The application releases the memory that it allocated to aacPlus decoder if it no longer needs the
decoder instance.

free (outbuf);
free (inbuf);
for (i=0; i<nr; i++)
{
 free (dec_config-> aacpd_mem_info.mem_info_sub[i].app_base_ptr);
}
free (dec_config);

2.1.1 app_swap_buffers_aacp_dec function usage

app_swap_buffers_aacp_dec is called by the decoder to get a new input buffer for decoding. This
function is called by the aacPlus decoder from within the aacpd_decode_frame function when it
runs out of current bit stream input buffer. The decoder uses this function to return the used buffer
and get a new bit stream buffer.

This function should be implemented by the application. The parameter new_buf_ptr is a double
pointer. This will hold the recently used buffer by the decoder when this function is called. The
application can decide to free this or do any sort of arithmetic to get any new address. The
application needs to put the new input buffer pointer in *new_buf_ptr to be used by the decoder.

The interface for this function is described below:
C prototype:
AACPD_INT8 app_swap_buffers_aacp_dec (AACPD_UINT8 ** new_buf_ ptr,
 ACPD_UINT32 * new_buf_len,
 AACPD_Decoder_Config *aacpd_decod_config);

Arguments:

• new_buf_ ptr - Pointer to the new buffer given by the application.
• new_buf_len - Pointer to length of the new buffer in bytes
• aacpd_decod_config - Decoder configuration structure.

Return value:

• 0 - Buffer allocation successful.
• -1 - End of bit-stream

Example pseudo code

AACPD_INT8 app_swap_buffers_aacp_dec (AACPD_INT8 ** new_buf_ptr,

 AACPD_UINT32 * new_buf_len,
 AACPD_Decoder_Config

*aacpd_decod_config)
{

Application Programmers Interface for aacPlus Enhanced Decoder 08-6329-API-ZCH66 3.4

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary • 21

 Request for an input buffer from the application
 Wait for the input buffer corresponding to the decoder
 instance of instance_id.

 if the new buffer arrives
 {
 Return the used buffer to the application.

 Set the new_buf_ptr to point to the new buffer and
 set *new_buf_len to the length of the new buffer.

Return 0 to the calling function to indicate that new buffer
has been received.

}
else if the application indicates end of bit stream
{

Set new_buf_ptr to NULL and *new_buf_len to 0.

Return -1 to the calling function to indicate the end of
input bit stream.

}
}

