Application Programmers Interface for MPEG2 Decoder 08-6289-SIS-ZCH66 1.49

R
08-6289-SIS-ZCH66

Z “freescale

semiconductor
1.9

Application Programmers
Interface for MPEG2 Decoder

ABSTRACT:

Application Programmers Interface for MPEG2 Decoder
KEYWORDS:

Multimedia codecs, Video, MPEG2
APPROVED:

Wang Ze Ning

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 1



Application Programmers Interface for MPEG2 Decoder

Revision History

08-6289-SIS-ZCH66 1.9

VERSION  DATE AUTHOR CHANGE DESCRIPTION

0.1 26-Jun-2006 Manoj Arvind Initial Draft

1.0 30-Jun-2006 Manoj Arvind Incorporated Review comments

1.1 22-Aug-2006 Durgaprasad S.Bilagi Modifications of API to support
decoding at frame boundary

1.2 22-Aug-2006 Manoj Arvind Updated the API

1.3 01-Sep-2006 Durgaprasad S.Bilagi Updated the API

1.4 09-Oct-2006 Durgaprasad S.Bilagi Added the bitrate element into the
structure

15 22-Oct-2007 Eagle Zhou Add comments for display frame size
unaligned by 16 pixels

1.6 05-Nov-2007 Eagle Zhou Add error handling, update
comments for API return code

1.7 08-Nv_2007 Wang Zening Add Direct rendering change

1.8 17-Mar-2008 Eagle Zhou Modify callback schema, and the old
interface still be compatible.

1.9 27-June-2008 Eagle Zhou Add API version information, release

© Freescale Semiconductor, Inc. 2008

decoder description and demo
protection return type

Freescale Confidential Proprietary o 2



Application Programmers Interface for MPEG2 Decoder 08-6289-SIS-ZCH66 1.49

Table of Contents

a1 00 141 T ] o TSR 4
11 PUIDOSE ...ttt 4
O oo oL TR TP PP UURTUPRURN 4
IR B AW o[ 1= o (ot I L= Yo ] o] £ o] o SRS 4
1.4 RETEIBNCES ...ttt sttt e et e e be e be e sbe e eae e e be e be e sbeesbeesaeeeabeanre s 4

O RS - T o P oL TTSSTURRSSRRI 4
1.4.2 Freescale Multimedia RETEIENCES ........ccoviiiiiiiii e e 4
1.5  Definitions, Acronyms, and ADDIeVIatioNS.........cccerieiriiiriniinese e 5
1.6 DOCUMENT LOCALION ...ttt sttt sre e e tesneeseenreenes 5

N N e I DT Tox ] o] [ o RS R 6
2.1 DAta SEIUCTUIES ...ttt ettt sb e bt e sb e et e e sbe e sbeesbeesabeanbe s 6
2.2 Enumerations and TYPEAETS ......cuvi i 10

2.2.1  Library APl REUIMN COUBS......cciiieiiiieciesie sttt sttt sttt sre e b sne e 10
2.2.2  Functional State 0f DECOUET .........coiiveieie et 10
2.2.3  MemOry ANGNMENT .......i ittt ettt nee e ereeneesee e e neesnenns 10
W O L o7 Tod G 1Y/ oL TSSO 11
2.2.5 Return for CallDack SELHING.........cceieieiiiieisiii e 11
2.2.6 IMIBIMOIY TYPB ..ottt h bttt ettt b e s bt e sbe e sbe e sb b e e nbeen b e e beenbeaeeee e 11
2.2.7 DeCOUING SCNBMIE......ii i sie sttt re e st e sre e sn e s neeenre e beenreenree e 11
2.2.8  BUTITEI QELET ..o.viceiice e 13
2.2.9  BUTTEI REJECIET ...ttt st see e eeeneens 13
2.2.10  BUFTEN REIBASET ...t e 13
2.2.11  BUFFEr MANAGET ..ccveceie ettt ettt 14
2.3 Application Programmer Interface FUNCLIONS .........cccooviiiiiiniiiicneeecee e 14
2.3.1 Call back register fFUNCLION. ........ccoiiiiiie et 14
FC T O 1 =T oY Y 1= o o] o S PRUSS 14
G I () (11 o] ISP 15
2.3.4  RE-QUETY IMBIMOIY ..ottt ittt b e bt b e sb e sbe e sb b e ab e e nbeebeenbeeseee e 15
2.3.5  Re-INITIAIIZALION. ..ot et 16
2.3.8  DBCOGR. ...ttt bbbttt e 16
2.3.7  REIBASE ...t e e pe e be e areeeree e 17
2.3.8  Input BUTTer INtEITAaCE......ccvee e e 17
P2 e B T o 10T oo o [ T TSSO 18
2.3.10  Set a BUFfer MANAGET ........coiiieiieieiee e 18
2.3.11  Set CallbaCk FUNCLIONS........iiieiiieeie et 18
P TN A N o Y- £ o] o PRSP 19
EXAMPIE LID USAQE ...ttt bbbttt 19

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 3



Application Programmers Interface for MPEG2 Decoder 08-6289-SIS-ZCH66 1.9

Introduction

1.1 Purpose

This document gives the application programmer’s interface to MPEG2-MP@ML Decoder library.
The document also illustrates an example of an application written using these API’s.

1.2 Scope

This document does not detail the implementation of the decoder. It only explains the APIs and
data structures exposed to the application developer for using the decoder library.

1.3 Audience Description

The reader is expected to have basic understanding of video processing and video coding standards.
1.4 References

1.4.1 Standards

e ISO/IEC 13818-2:2000 Information technology -- Generic coding of moving pictures and
associated audio information: Video

1.4.2 Freescale Multimedia References

Tablel.  MPEG2 Decoder Requirements Book — mpeg2_dec_regb.doc

Table 2.  MPEG2 Decoder Test Plan — mpeg2_dec_test_plan.doc

Table 3.  MPEG2 Decoder Release notes — mpeg2_dec_release notes.doc
Table 4.  MPEG2 Decoder Test Results — mpeg2_dec_test_results.doc

Table5.  MPEG2 Decoder Performance Results — mpeg2_dec_perf_results.doc
Table 6. MPEG2 Interface Header — mpeg2_dec_api.h

Table 7.  MPEG2 Application code — MPEG2DecTestApp.c

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary o 4



Application Programmers Interface for MPEG2 Decoder

08-6289-SIS-ZCH66 1.49

1.5 Definitions, Acronyms, and Abbreviations

TERM/ACRONYM DEFINITION

API Application Programming Interface
ARM Advanced RISC Machine

DCT Discrete Cosine Transform

DSP Digital Signal Processing

FSL Freescale

IDCT Inverse Discrete Cosine Transform
IPU Image Processing Unit

ISO International Standards Organization
ITU International Telecommunication Union
MC Motion Compensation

ME Motion Estimation

MPEG Moving Pictures Expert Group

ML Main Level

MP Main Profile (in MPEG-2)

RVDS RealView Development Suite for ARM
UNIX Linux PC x/86 C-reference binaries
VLD Variable Length Decoding

TBD To be decided

1.6 Document Location

docs/mpeg2_dec

© Freescale Semiconductor, Inc. 2008

Freescale Confidential Proprietary 5


http://mephisto.ea.freescale.net/wsd/platform.html

Application Programmers Interface for MPEG2 Decoder 08-6289-SIS-ZCH66 1.9

2 API Description

2.1 Data Structures
This section describes the data structures used in the decoder interface.

sMpeg2DecObject

This is the main data structure which should be passed to all the decoder functions. The definition
of the structure is given below.

typedef struct

sMpeg2DecMemAllocInfo sMemInfo; /*l< memory requirements info */
sMpeg2DecoderParams sDecParam; /*l< decoder parameters */
void *pvMpeg20bj; /*!< decoder library object */
void *pvAppContext; /*!< Anything app specific */
eDecodeState eState; /*!< Indicates current Decoder State */

int (* ptr cbkMPEG2DBufRead) (int *, unsigned char **, int , void *);
} sMpeg2DecObject;

Description of structure sMpeg2DecObject
sMemlnfo
This is memory information structure. This is further described later.
sDecParam
The output of the decoder is encapsulated in this structure. This is described later.
pvMpeg20bj
This is an internal video object context for the decoder and application should not change
this.
pvAppContext
This space is provided for the application to keep its context and the decoder does not use
it.
eState

Indicates current decoder state
ptr cbkMPEG2DBufRead
Call back function pointer that needs to be set by the application

sMpeg2DecMemAllocinfo

This structure holds the pre allocated memory chunks for decoding. The decoder memory
requirements are given to the application when eMPEG2DQuerymem is called. The decoder
specifies number of memory chunks needed by filling s32NumRegs in this structure. For each
memory chunk, size, type, align parameters are set in asMemBIKks array based on decoder
requirement. Application shall allocate the memory required by the decoder by looking at this
structure before initializing the decoder.

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 6



Application Programmers Interface for MPEG2 Decoder 08-6289-SIS-ZCH66 1.49

typedef struct

int s32NumReqgs ;

int s32BlkNum ;_
sMpeg2DecMemBlock asMemBlks [MAX NUM MEM REQS] ;
int s32MinFrameBufferNum;

} sMpeg2DecMemAllocInfo;

Description of structure sMpeg2DecMemAllocInfo

s32NumReqgs
Number of memory blocks (chunks) required. Decoder will set this to required value when
eMPEG2DQuerymem and eMPEG2D_Re_Querymem functions are called. The application
has to allocate the specified number of memory chunks.

$32BIkNum
This field indicates the index of the starting memory block. The test application has to
allocate memory for s32NumReqs memory blocks starting from the memory block indexed
by this field.

asMemBIks
Array of memory block structure, for each request defined in s32NumReqs application
should pre-allocate the memory. The function s32AllocateMem2Decoder illustrates the
usage.

s32MinFrameBufferNum
A integer number that indicates the minimum frame buffers that need by the decoder
during decoding, this value will be used for correctly creating the frame buffer manger.
This value will be got after invoking eMPEG2D_Re_Querymem()

MAX_NUM_MEM_REQS is the maximum number of memory chunk requests the
decoder can make. Currently this value is set to 30.

sMpeg2DecMemBlock

This describes the memory chunk requirement details such as size, type, etc. The application shall
allocate memory depending on the requirement and set the pointer in the space provided. The
library shall use the memory given by the application.

typedef struct

int s32S8ize;

int s32Type;

int s32Priority;
int s32Align;
void *pvBuffer;

} sMpeg2DecMemBlock;

Description of the structure sMpeg2DecMemBlock

s32Size
The size (in bytes) of the memory required to be allocated by the test application (filled by
the decoder).

s32Type
This field is an informative field (filled by the decoder). This can be used by the test
application to decide the memory pool (fast memory / slow memory / memory to be shared

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 7



Application Programmers Interface for MPEG2 Decoder 08-6289-SIS-ZCH66 1.9

with driver etc) from which memory needs to be allocated for the decoder. This field is not
used in the present release.
s32Align
The alignment required by the memory block. The values are defined in Memory
Alignment(filled by the decoder). This field is not used in the present release.
pvBuffer
The pointer of the memory allocated by the application should be populated in this field.
This will be used by the decoder to populate pointers used internally.

s32Priority
This field is not used in the present release.

sMpeg2DecoderParams

Data structure for the decoder parameters. All the values of this structure are filled by decoder after
decoding a frame.

typedef struct

sMpeg2DecYCbCrBuf sOutputBuffer;
signed char *p8MbQuants;
unsigned short int ulé6FrameWidth;
unsigned short int ul6FrameHeight;
unsigned int bitrate;

} sMpeg2DecoderParams ;

Description of the structure sMpeg4DecoderParams

sOutputBuffer
Decoded output is stored in this structure.

p8MbQuants
Pointer to the memory, which stores the quantization value for the decoded frame as
required by the IPU for post processing. The quant values are specified in raster scan order
of MBs, one byte for each MB. This is not used in the current release.
ul6FrameWidth
Display width of the frame. The width of the frame may be not a multiple of 16.
ul6FrameHeigth

Display height of the frame. The height of the frame may be not a multiple of 16.
Bitrate

Bitrate of the video bitstream.

[Note]

The output buffers represented by sOutputBuffer are aligned by 16 pixels for width and
height. If ul6FrameWidth or ul6FrameHeight is not multiple of 16, application need to crop the
valid data from the output buffers.

For example:

If uFrameWidth=160, uFrameHeight=120, then application can compute the real output
buffer size according below formula:

[(160+15)&0xFFFFFFFO , (128+15)&0xFFFFFFF0)=[160,128]

The format for buffer is listed below:

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary o 8



Application Programmers Interface for MPEG2 Decoder 08-6289-SIS-ZCH66 1.49

Display Data for Y

uFrameHeight

xtended buffer height

extended buffer width
Display Data
For Cb

Display Data
For Cr

sMpeg2DecYCbCrBuf

This Data structure encapsulates the decoded YCbCr buffer.

typedef struct

unsigned char *pu8YBuf;
int s32YBufLen;
} sMpeg2DecYCbCrBuffer;

Description of the structure sMpeg2DecYCbCrBuffer

pu8YBuf
The decoder generates Y, Cb, Cr output in 4:2:0 format. The output is stored in a
continuous buffer with Y component, followed with Cb and Cr components. The start
address of the Y component is populated by the decoder in this field. The Cb and Cr
addresses must be computed by the application. If the display width and height is not
multiple of 16 pixels, the buffer will be extended to multiple of 16 for Y,Cb,Cr
respectively by decoder.

s32YBuflLen
Length of the Y Buffer. It is set by the decoder. Application developer need not set it, if set
it will be overridden by Decoder. This field is used by application to calculate the offset of
the Cb and Cr components (see eMPEG2KevWrite).

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 9



Application Programmers Interface for MPEG2 Decoder 08-6289-SIS-ZCH66 1.9

2.2 Enumerations and Typedefs

2.2.1 Library API Return codes

This enum holds the return types of the APIs.

typedef enum

/* Successfull return values */

E MPEG2D _SUCCESS = 0, /*l< Success */

E_MPEG2D_PARTIAL DECODE, /*!0nly one field is decoded*/
E_MPEG2D_ENDOF_BITSTREAM,/*!< End of Bit Stream */

E MPEG2D FRAME READY,/* Frame 1s available to application */

E MPEG2D NOT ENOUGH BITS = 31,/*!<Not enough bits are provided*/

E_MPEG2D OUT OF MEMORY, /*!< Out of Memory*/

E MPEG2D_WRONG ALIGNMENT, /*l< Incorrect Memory alignment*/

E _MPEG2D SIZE CHANGED, /*!< Image size changed*/

E MPEG2D INVALID ARGUMENTS, /*!< API arguments are invalid*/

E MPEG2D DEMO PROTECT /* the output is corrupted by demo
protection */

E MPEG2D ERROR_STREAM = 51, /*!< Errored Bitstream. In such case,

the decoder can work normally, but will
output bad data. The application decide
whether continue decode the current
stream. */

E MPEG2D FAILURE, /*!< Failure. In such case, application
should stop decoding current stream.*/

E _MPEG2D _UNSUPPORTED, /*!l< Unsupported Format */

E MPEG2D NO IFRAME, /*!< MPEG2D first frame is not an I frame */

E_MPEG2D SIZE NOT FOUND, /*!< Frame size not found in bitstream */
E_MPEG2D NOT INITIALIZED /*!< Decoder Not Initialised*/
} eMpeg2DecRetType;

2.2.2 Functional State of Decoder

This enum holds the current functional state of the Decoder.
typedef enum

{
E_MPEG2D_INVALID =0, /*1< Invalid Decoder State */
E_MPEG2D_PLAY, /*1< Decoder is decoding frames */
E MPEG2D_FF, /*1< Decoder is skipping frames */
E_MPEG2D_REW /*1< Decoder is skipping frames in a direction
opposite to PLAY and FF. Current Decoder
doesn't support REW feature */
} eDecodeState

2.2.3 Memory Alignment

This enum holds the memory alignment type.

typedef enum

E MPEG2D ALIGN NONE = 0,/*!< buffer can start at any place */

E MPEG2D ALIGN HALF WORD, /*!< start address's last bit has to be 0*/

E_MPEG2D ALIGN_ WORD /*!< start address's last 2 bits has to be 0 */
} eMpeg2DecMemAlignType;

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 10



Application Programmers Interface for MPEG2 Decoder 08-6289-SIS-ZCH66 1.49

2.2.4Callback type
This enumeration holds the callback function type
typedef enum

{
E GET FRAME =0,
E_REJECT FRAME,
E RELEASE FRAME,
} eCallbackType;

E GET FRAME — register buffer getter callback function
E REJECT FRAME — register buffer rejecter callback function
E RELEASE FRAME - register buffer releaser callback function

2.2.5Return for Callback setting
This enumeration holds the return value of callback setting
typedef enum

{
E CB SET OK =0,
E CB SET FAIL,
} eCallbackSetRet;
E _CB_SET OK — callback function is set successfully

E CB SET FAIL — callback function is not set successfully

2.2.6Memory type

The following defines specifies the memory types of the memory blocks requested by the decoder.
In the current release, the decoder doesnot populate this field. This will be used in future releases.

2.2.7Decoding Scheme

This release of MPEG2 decoder supports MP@ML with 4:2:0 output and video frames with
height and width which are multiples of 16.

INPUT

The decoder works on a frame boundary. For every call of the decode, the decoder raises a
callback function, cokMPEG2DBufRead. The application needs to identify the frame boundary
of the bitstream for decoding and must populate the address of the input bitstream and the
length of the bitstream corresponding to the context.

1) When the call back function is raised from the eMPEG2D_Re_Querymem, the test
application has to provide an input buffer with bitstream data including the
sequence start code (beginning of the bitstream) till just before the first picture start
code [00 00 01 00](exclusive of start code).

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary 11



Application Programmers Interface for MPEG2 Decoder 08-6289-SIS-ZCH66 1.9

2) When the call back function is raised from the first call to the decode, the test
application must provide input buffer with bitstream data including the sequence
start code till just before the second picture start code (exclusive of the second start
code)

3) For the next call back from the decoder, the test application must provide input
buffer with bitstream data starting from the second picture start code till just before
the third picture start code (exclusive of the third picture start code).

4) For subsequent call backs, the test application must provide bitstream data as
described in (3)

5) For the very last video frame, the test application must provide input buffer with
bitstream data after the last picture start code till the end of bitstream sequence.

OUTPUT

The decoder returns control to the application at the end of decoding one frame / partial frame
of video. The enum E mMpPEG2D FRAME READY indicates the availability of one completely
decoded frame. Enum E MPEG2D PARTIAL DECODE is used to signal partial decoding of a
frame. The decoder can be called till the decoder returns the enum
E _MPEG2D ENDOF BITSTREAM, Which indicates the end of sequence for that particular
bitstream. The address of the frame to be displayed and the length will be populated in the
structure sMpeg2DecYCbCrBuffer. The decoded output format will be 4:2:0, with Y (Luma),
Cb and Cr components in a continuous memory. The starting address of the frame is populated
on the structure element pugvBuf. The total size of the Luma (Y) of video frame is
s32YBufLen. The offset for start of Cb component is s32YBufLen. The length of the Cb buffer
is s32YBufLen/4. The offset for start of Cr component is s32YBufLen*1.25. The length of the
Cr buffer is s32YBufLen/4. A sample implementation for output write is illustrated in
eMPEG2KevWrite (MPEG2DecTestApp.c).

MEMORY QUERYING MECHANISM

The application queries the decoder for memory requirement. The APIs, viz
eMPEG2DQuerymem and eMPEG2D_Re Querymem are used to query the memory
requirements. The application allocates memory and invokes the initialization APIs viz.,
eMPEG2D _Init and eMPEG2D_Relnit.

The application needs to ensure that before invoking the eMPEG2D_Re Querymem the
bitstream read call back function must be registered using Mpeg2_register_func

This function raises the call back function to extract the parameters that are required by the
decoder for requesting memory, which has a dependency on the bitstream. For this callback,
the application must provide bitstream data from the beginning (sequence start code) till just
before the first picture start code (exclusive).

The application must ensure that memory is allocated for all the requested chunks by the
decoder. If the application is unable to allocate all the chunks of memory requested, the
application must not invoke the eMPEG2D_Init and eMPEG2D_Relnit APIs. (see main in
MPEG2DecTestApp.c for sequencing of the APIs.)

DECODING PROCESS
The decoding of a frame of video is started when application calls eMPEG2Decode. The
return enum is described in the OUTPUT section above.

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 12



Application Programmers Interface for MPEG2 Decoder 08-6289-SIS-ZCH66 1.49

2.2.8Buffer getter

Since the Direct Rendering is adopted, the decoder will ask to get a new buffer for decoding. A
function which is implemented by the application (frame work) will be used to perform getting a
frame buffer for decoding.

Prototype:
typedef void* (*bufferGetter)(void* /*pvAppContext*/);

Arguments:
e Application context

Return value:
e A frame buffer

2.2.9Buffer Rejecter

Since the Direct Rendering is adopted, the decoder will ask to get a new buffer for decoding.

It’s possible that the gotten frame buffer may be refused by the decoder. Decoder need to inform
the application (framework) that this frame is rejected.

A function which is implemented by the application (frame work) will be used to perform reject ion
of a frame buffer.

Prototype:

typedef void (*bufferRejecter)( void* /*mem_ptr*/, void*
/*pvAppContext*/);

Arguments:

o A rejected frame buffer

e Application context

Return value:
e None

2.2.10 Buffer Releaser

Since the Direct Rendering is adopted, the decoder need one way to notify that the buffer acquired
from bufferGetter() will not be referenced by other frames. As result, application can reuse and
modify the buffer released.

A function which is implemented by the application (frame work) will be used to perform release
action of a frame buffer.

Prototype:

typedef void (*bufferReleaser)( void* /*mem_ptr*/, void*
/*pvAppContext*/);

Arguments:

e Areleased frame buffer

e Application context

Return value:
e None

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 13



Application Programmers Interface for MPEG2 Decoder 08-6289-SIS-ZCH66 1.9

2.2.11 Buffer Manager

For clarifying the concept and simplifying the API, we group the 2 function pointer we described
above into a structure named DR_BufferManager:

typedef struct __MPEG2D_ FrameManager

bufferGetter BfGetter;
bufferRejecter BfRejector;
} MPEG2D_FrameManager ;

2.3 Application Programmer Interface Functions

2.3.1 Call back register function.

Application needs to register a function that is being used for reading the buffer by the library using
this register function. This register function would initialize the callback function pointer which is
part of the library. So the library would make a call back to the application using this function
pointer whenever it needs more data.

Prototype:
void mpeg2_register_func(sMpeg2DecObject * mp2DecObjPtr,
int (*cbkMPEG2DBufRead_ptr) (int * , unsigned char **, int , void *)

);
Arguments:
o Mp2DecObjPtr Decoder parameter structure pointer
o cbkMPEG2DBufRead_ptr Pointer to function of return type int, and accepting four
arguments of type int *, unsigned char **, int and void
respectively.

Return value:
None

2.3.2 Query Memory

This function returns the memory requirement for the decoder, which is independent of bitstream.
The decoder populates the sMpeg2DecObject.sMemIinfo structure. The application will use this
structure to pre-allocate the requested memory block (chunks) by setting the pointers of asMemBlks
in sMpeg2DecObject.sMemInfo structure to the required size, type & aligned memory.

Prototype:

eMpeg2DecRetType eMPEG2DQuerymem (sMpeg2DecObject *psMp20bj)
Arguments:
° psMp20bj Pointer to sMpeg2DecObject

Return value:

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 14



Application Programmers Interface for MPEG2 Decoder 08-6289-SIS-ZCH66 1.49

eMpeg2DecRetType  Tells whether assignment of parameters needed for memory allocation was
successful or not. Enumeration is described in the above section.
Return values are -
E_MPEG2D SUCCESS - Function successful.
Other values - Error

2.3.3 Initialization

Initializations required for the decoder are done in eMPEG2D _Init. This function must be called
before the main decoder functions are invoked. The application must invoke this function only if all

the chunks of memory requested by the decoder have been allocated. This API must be called after
eMPEG2DQuerymem.

Prototype:
eMpeg2DecRetType eMPEG2D Init (sMpeg2DecObject *psMp20bj)

Arguments:
o psMp20bj Pointer to sMpeg2DecObject

Return value:
eMpeg2DecRetType  Tells whether decoder has been successfully initialized or not.
Enumeration is described in the above section
Return values are -
E MPEG2D_SUCCESS - Function successful.
Other values - Error

2.3.4Re-Query Memory

This function returns the memory requirement for the decoder, which is dependent of bitstream.
The decoder populates the sMpeg2DecObject.sMemInfo structure after parsing the bitstream. The
application will use this structure to pre-allocate the requested memory block (chunks) by setting
the pointers of asMemBlIks in sMpeg2DecObject.sMeminfo structure to the required size, type &
aligned memory. The application must ensure that bitstream is available prior to calling this API.
This APl must be invoked after eMPEG2D Init.

Prototype:
eMpeg2DecRetType eMPEG2D Re Querymem (sMpeg2DecObject
*psMp20b7)
Arguments:
° psMp20bj Pointer to sMpeg2DecObject

Return value:
eMpeg2DecRetType  Tells whether assignment of parameters needed for memory allocation was
successful or not. Enumeration is described in the above section.
Return values are -
E MPEG2D_SUCCESS - Function successful.
Other values - Error

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 15



Application Programmers Interface for MPEG2 Decoder 08-6289-SIS-ZCH66 1.9

2.3.5 Re-Initialization

Initializations of bitstream dependent elements required for the decoder are done in
eMPEG2D_Relnit. This API must be invoked after eMPEG2D Re Querymem. This API will reset
all decoder parameters.

Prototype:
eMpeg2DecRetType eMPEG2D RelInit (sMpeg2DecObject *psMp20bj)
Arguments:

e psMp20bj Pointer to sMpeg2DecObject

Return value:
eMpeg2DecRetType  Tells whether decoder has been successfully initialized or not.
Enumeration is described in the above section
Return values are -

E MPEG2D_SUCCESS - Function successful.
Other values - Error
2.3.6 Decode

The main decoder function is eMPEG2Decode. This API decodes the MPEG2 bit stream in the
input buffers to generate one frame of decoder output in every call (4:2:0 format). The address of
the output frame is populated in the structure sMpeg2Decobject.sDecParam.sOutputBuffer

Prototype:
eMpeg2DecRetType eMPEG2Decode (sMpeg2DecObject *psMp20bj, unsigned int
*s32decodedBytes, void *pvAppContext) ;

Arguments:

e psMp20bj Pointer to sMpeg2DecObject

e s32decodedBytes  Pointer to the number of bytes decoded by the library. This will be
populated by the decoder for each call.

e pvAppContext Caller context is used to distinguish between calls from different
decoding threads in a muti-threaded environments. This parameter
can be ignored in a single threaded application. The test
application needs to provide this information for every call to the
decode function.

Return value:
eMpeg2DecRetType  Tells whether decoder has been successfully initialized or not.
Enumeration is described in the above section
Return values are -

E_MPEG2D_SUCCESS - Function successful.

E_MPEG2D_PARTIAL_DECODE- Partial decode of the frame.

E MPEG2D_FRAME_READY - One decoded frame available to the
application

E_MPEG2D_ENDOF_BITSTREAM-  Completion of decoding the complete
bitstream

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 16



Application Programmers Interface for MPEG2 Decoder 08-6289-SIS-ZCH66 1.49

E_MPEG2D_UNSUPPORTED - Bitstream not supported
Other values - Error
2.3.7Release

The release function is eMmPEG2DFree. This API release related resources used by decoder object.
It will be called after decoding all frames.

Prototype:
eMpeg2DecRetType eMPEG2DFree (sMpeg2DecObject *psMp20b7j):
Arguments:

o psMp20bj Pointer to sMpeg2DecObject

Return value:
eMpeg2DecRetType  Tells whether decoder has been successfully released.
Enumeration is described in the above section
Return values are -
E MPEG2D_SUCCESS - Function successful.
Other values - Error

2.3.8 Input buffer interface

cbkMPEG2DBufRead is a synchronous call used by the decoder to read the encoded data from the
application. This function is called by the decoder in eMPEG2D_Re Querymem, and
eMPEG2Decode functions, when it runs out of current bit stream buffer.

This function is not part of the library and has to be supplied by the user of the decoder library.
Application developer has complete control in implementing this APl based on his/her system
requirement. The decoder cannot continue till this function returns with required bitstream pointer
and the length of the bitstream to be decoded. Refer section 2.2.5 for details on how the test
application must provide the input to the decoder.

Prototype:
int c¢bkMPEG2DBufRead ( int *s32BuflLen,
unsigned char **pu8Buf,
int s320ffset,
void * pvAppContext );

Arguments:

e s32BuflLen Length of the bitstream corresponding to the frame to be decoded. The
test application populates this value.

o pu8Buf Pointer to the input bitstream buffer has the start address of the bitstream
buffer corresponding to the frame to be decoded . The test application
populates this address.

o 5320ffset The current release doesnot use this parameter.

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary 17



Application Programmers Interface for MPEG2 Decoder 08-6289-SIS-ZCH66 1.9

o pvAppContext Caller context, is used to distinguish between calls from different
decoding threads in a muti-threaded environments. This parameter can
be ignored in a single threaded application. The decoder will populate
this field.

Return value:

Returns the size of the buffer copied else return -1.

2.3.9Debug Logging

The current release doesnot support Debug logging.

2.3.10  Set a Buffer Manager

As section 2.2.6, 2.2.7 and 2.2.8 mentioned, a buffer manager is needed for DR. This object should
be set by the application (frame work) before decoding and after initialization.
The function specified below is used to set the buffer manager.

Prototype:
void MPEG2DSetBufferManager (sMpeg2DecObject *psMp20bj ,
MPEG2D_FrameManager* manager);
Arguments:
e psMp20bj Pointer to sMpeg2DecObject
e manager a pointer to a frame buffer manager which is used to get and

reject buffer.

Return value:
None

2.3.11 Set Callback Functions

More callback functions can be set through this interface besides getter and rejecter described in
buffer manager.
This function should be called by application before decoding and after initialization.

Prototype:
eCallbackSetRet MPEG2DSetAdditionalCal lbackFunction
(sMpeg2DecObject *psMp20bj, eCallbackType funcType, void* cbFunc);
Arguments:

e psMp20bj a pointer which is used to indicate the decoder object.

o TuncType callback function type

e cbFunc callback function pointer

Return value:

eCallbackSetRet Tells whether callback function has been set successfully
Return values are -
E CB_SET OK - set successful.
E_CB_SET_FAIL - set fail.

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 18



Application Programmers Interface for MPEG2 Decoder 08-6289-SIS-ZCH66 1.49

2.3.12 API Version

This is the decoder function to get the API version information

Prototype:
const char * MPEG2DCodecVersionInfo();

Arguments:
e None

Return value:
const char * The pointer to the constant char string of the version information string

Example Lib Usage

Section 2.2.5 explains the flow of the MPEG2 decoder. For details please refer the
MPEG2DecTestApp.c. The flow graph of MPEG2 Decoder test application is illustrated below. The
boxes in green color represent the APIs.

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 19



Application Programmers Interface for MPEG2 Decoder

Open Input and Output Files. Allocate memory for sMpeg2DecObject

v

eMPEG2DQuerymem
v

s32AllocateMem2Decoder

v

eMPEG2D Init

v

Mpeg?2_register_func

v

eMPEG2D_Re_Querymem

v

s32AllocateMem2Decoder

h 4

Reset bitstream pointer

v

eMPEG2D_Relnit

\ 4

MPEG2DSetBufferManager

NO

NO

—< End of bitstream or Error

»
|

eMPEG2Decode

08-6289-SIS-ZCH66 1.9

A 4

/\

< Is Frame available for writing? >

YES

------ » cbkMPEG2DBufRead (raised
once for each call of decode
and for the requery)

eMPEG2KevWrite

v

—

YES

——

eMPEG2KevClose

v

eMPEG2FreeMem

End

© Freescale Semiconductor, Inc. 2008

Freescale Confidential Proprietary 20



	Introduction 
	1.1 Purpose 
	Scope 
	Audience Description 
	References 
	1.4.1  Standards 
	1.4.2  Freescale Multimedia References 

	1.5 Definitions, Acronyms, and Abbreviations
	Document Location 
	2 API Description  
	2.1 Data Structures 
	2.2 Enumerations and Typedefs 
	2.2.1  Library API Return codes 
	2.2.2  Functional State of Decoder 
	2.2.3  Memory Alignment 
	2.2.4 Callback type  
	2.2.5 Return for Callback setting 
	2.2.6 Memory type  
	2.2.7 Decoding Scheme 
	2.2.8 Buffer getter 
	2.2.9 Buffer Rejecter   
	2.2.10 Buffer Releaser   
	2.2.11 Buffer Manager 

	2.3 Application Programmer Interface Functions 
	2.3.1  Call back register function. 
	2.3.2  Query Memory  
	2.3.3  Initialization 
	2.3.4 Re-Query Memory  
	2.3.5  Re-Initialization 
	2.3.6  Decode  
	2.3.7 Release  
	2.3.8  Input buffer interface 
	2.3.9 Debug Logging 
	2.3.10 Set a Buffer Manager 
	2.3.11 Set Callback Functions 
	2.3.12 API Version  


	Example Lib Usage 


