Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

® £
09-7428-API-ZCH70

Z “freescale-

semiconductor
1.1

Application Programmers
Interface for MPEG4 ASP
Decoder

ABSTRACT:

Application Programmers Interface for MPEG4 Decoder
KEYWORDS:

MPEG4 ASP, Video codec
APPROVED:

Wang Zening

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 1

Application Programmers Interface for MPEG4 ASP Decoder

Revision History

09-7428-API-ZCH70 1.1

VERSION DATE AUTHOR CHANGE DESCRIPTION

0.1 01-Dec-2008 Wang Zening Initial Draft

1.0 10-Mar-2009 Ding Qiang Refine for version 1.0 release

1.1 31-Mar-2009 Chen Qianzong Update for ARM9/ARM11 release

© Freescale Semiconductor, Inc. 2009

Freescale Confidential Proprietary e 2

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

Table of Contents

R [411 £ o [FTox (o] o TR URO USRI
1.1 PUIPOSE ...ttt b bbb bbb
1.2 R Tol0] o[- PRSP
1.3 RETEIEICES ... ettt bbbt bbbt ne et nbenreenes

131 STANAAIUS ...ttt bbbttt ne e b e nreenes
1.3.2 Freescale Multimedia REfErenCeS ...
1.4 Definitions, Acronyms, and ABBreviations............ccccvevvreiveieiienene s

B AN o B ST o] oo S

2.1 DAta SEIUCLUIESeeeeeeee ettt ettt b ettt et b b e b e e b e e b e enbeesbeesnesnnesreenneennas
211 Decoder HanIe...... ..o e
212 SIMPEGADECINITINTO ... e
2.1.3 SMpPeg4DecMemMAIIOCINTO......vciie e
214 SMPEGADECMEMBIOCK.........c i
215 EMPEgADECMEMALIGNTYPE ...ttt
2.1.6 SMPEGADECSIreaMINTO....c..iiii e
2.1.7 SMPEGADECY COCIBUF ..o sre e
2.1.8 SMPEGADECAPPCAD . veee vttt
2.1.9 SMPEgADECFIamMEMAEaNAGETuviiiiiiiie ittt st
2.1.10 Callback functions for getting frame buffers...........c.ccoovivvieiii s,
2.1.11 Callback functions for rejecting frame buffers..........ccccooviviiii s,
2.1.12 Callback functions for release frame buffers............coooiieiii i

2.2 Enumerations and TYPEAETScvci i
221 Library API RETUIMN COUES.ccuiiiiiiiriciisiirieise sttt
2.2.2 DeCOdING SCREME......eiieee ettt srenrenre s

2.3 Application Programmer Interface FUNCLIONScccoviriieiiciicc e
231 Query Initialization INFOrMatioN............cooiiiiiiiiec e
2.3.2 Create 8 DeCOUBT INSTANCEc.veveieiiesiese ettt st sre e
233 DECOAE FIAIMIE ...ttt bttt bbb st sb et b b
234 Gt QULPUL TTaIME. .. .eeivieie ettt et ste e be e anaennee s
2.35 FIUSN ONE FTaME ...t nre s
2.3.6 SO PAIAIMETET ...ttt b bt nr e
2.3.7 GBE PAIAIMETEN ...ttt bbbt bt nr e r e enes

3 DECOTET USAQEvireeiieiiieeiiete sttt ettt bbbttt bbbt b e b bbbtk bbb bt b nne s
31 INKHANIZALION ...t
3.2 Frame DECOTE ..o bbbt b e e bbbttt b e b b ens
3.3 FNISI ettt e enes
3.4 Use SKIp B Frame TRAIUIEcuiiiiieiieiiteee st
3.5 Useskip B and P Frame fEAtUIEccccviveieiieiiie e
3.6 USE TIUSN QUL TEALIUIE ... e

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 3

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

1 Introduction

1.1 Purpose

This document gives the application programmer’s interfaces to MPEG4-ASP / H263-BL Decoder
library.

1.2 Scope

This document does not detail the implementation of the decoder. It only explains the APIs and
data structures exposed to the application developer for using the decoder library

1.3 References

1.3.1 Standards

e [SO/IEC 14496-2:2003

Information technology -- Coding of Audio-Visual Objects — Part2: Visual
e ITU-T H.263 video coding specification.
e ITU-T H.263 Annex X, Profiles and levels definition (SERIES H: AUDIOVISUAL AND
MULTIMEDIA SYSTEMS, Infrastructure of audiovisual services — Coding of moving video,
4/2001)

1.3.2 Freescale Multimedia References

MPEG4 ASP Decoder Application Programming Interface — mpeg4 _asp_dec_api.doc
MPEG4 ASP Decoder Release notes - mpeg4_asp_dec_release_notes_arm9.doc
MPEG4 ASP Decoder Release notes - mpeg4 _asp_dec_release_notes_armll.doc
MPEG4 ASP Decoder Datasheet - mpeg4_asp_dec_datasheet_arm9.doc

MPEG4 ASP Decoder Datasheet - mpeg4 _asp_dec_datasheet_arm11.doc

MPEG4 ASP Decoder Interface Header — mpeg4_asp_api.h

1.4 Definitions, Acronyms, and Abbreviations

TERM/ACRONYM DEFINITION

API Application Programming Interface
ARM Advanced RISC Machine

FSL Freescale

ISO International Standards Organization
ITU International Telecommunication Union

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary o 4

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

MPEG Moving Pictures Expert Group

ASP MPEG4 Advanced Simple Profile

SP MPEG4 Simple Profile

VOP Video Object Plane

CDB Configurable Decoding Buffer which means the decoding buffer

are configured before decode every frame

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 5

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

2 API Description

2.1 Data Structures

This section describes the data structures used in the decoder interface.

2.1.1 Decoder Handle

The handle of decoder is the only identifier of a certain decoder instance.
typedef void* MPEG4DHandle;

2.1.2 sMpeg4Declnitinfo

This structure holds initial information that the decoder needs to work.
typedef struct

sMpeg4DecMemAl loclinfo sMemInfo;
sMpeg4DecStreamInfo sStreaminfo;
S32 s32MinFrameBufferCount;

} sMpeg4Declnitinfo;
Description of the structure sMpeg4Declnitinfo
sMemlnfo
The decoder wouldn’t allocate any block of memory internally and the application should
be responsible for memory allocation according to decoder’s request. This field indicates
all the memory requirements expect frame buffers. See section 2.1.3 .
sStreamInfo
High level stream information after initial header parsing. See section 2.1.6 .
s32MinFrameBufferCount
The minimum number of frame buffers that decoder will need. This field is helpful for the
application to allocate frame buffers, filled by decoder.

2.1.3 sMpeg4DecMemAllocinfo

The application should call eMPEG4DQuerylnitinfo, see section 2.3.1, to get the initial memory
requirement. Generally, memory allocated by the application can be classified into two types, fast
and slow. Fast type memory would be SRAM blocks embedded in the chip and slow type would be
external memory such as SDRAM, DDR, etc.

The application should try its best to allocate faster memory for a sFastMemBIks. If the platform
only provides memory with the same access speed, the application can ignore the different speed

requirement and allocate required memory to these 2 chunks.
typedef struct

sMpeg4DecMemBlock sFastMemBlk; /*!Fast memory Block */
sMpeg4DecMemBlock sSlowMemBlk; /*!Slow memory Block */
} sMpeg4DecMemAlloclinfo;

Description of the structure sMpeg4DecMemAllocinfo
sFastMemBIk

Memory block structure to record fast memory requirement
sSlowMemBIk

Memory block structure to record slow memory requirement

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 6

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

2.1.4 sMpeg4DecMemBlock

This describes the memory chunk requirement details such as size, type, etc. The application shall
allocate memory depending on the requirement and set the pointer in the space provided. The

decoder shall use the memory given by the application.
typedef struct

S32 s32Size; /*1< size of the memory block */
eMpeg4DecMemAlignType eAlign; /*1< alignment of the memory block */
void *pvBuffer; /*1< pointer to allocated memory buffer */

} sMpeg4DecMemBlock;
Description of the structure sMpeg4DecMemBlock
s32Size
The size of the memory required (filled by the decoder).
eAlign
The required alignment type of the memory block
The values are defined in the section 2.1.5 .

pvBuffer
This will be updated by the application based on the memory requirement.

2.1.5 eMpeg4DecMemAlignType

This enum holds the memory alignment type.
typedef enum

E_MPEG4D_ALIGN_1BYTE = 0, /*!< buffer can start at any place */

E_MPEGA4D_ALIGN_2BYTE, /*1< start address®s last 1 bit has to be 0 */
E_MPEGA4D_ALIGN_4BYTE, /*1< start address’s last 2 bits has to be 0 */
E_MPEGA4D_ALIGN_8BYTE, /*1< start address’s last 3 bits has to be 0 */
E_MPEG4D_ALIGN_16BYTE, /*1< start address’s last 4 bits has to be 0 */
E_MPEG4D_ALIGN_32BYTE, /*1< start address’s last 5 bits has to be 0 */

} eMpeg4DecMemAlignType;

2.1.6 sMpeg4DecStreaminfo

The application should call eMPEG4DQuerylnitinfo to get the high level stream information.
typedef struct

{

/*VOS level*/
S32 s32Profile; /*stream profile, 0 for SP, 1 for ASP*/
S32 s32Level; /*stream level*/

/*VOL level*/

ui6 ul6PaddedFrameWidth; /*1< Padded FrameWidth*/
u16 ul6PaddedFrameHeight; /*1< Padded FrameHeight*/
ui6 ul6ActFrameWidth; /*1< Actual FrameWidth */
ui6 ul6ActFrameHeight; /*1< Actual FrameHeight*/
uie ul6LeftOffset; /*cropping origin x*/
u16 ul6TopOffset; /*cropping origin y*/

} sMpeg4DecStreaminfo;
Description of structure sMpeg4StreamInfo
s32Profile
Stream Profile, O for SP, 1 for ASP, -1 for others.
If there is no this information in the stream, the default value is 1(ASP).
s32Level
Stream Level
If there is no this information in the stream, the default value is 7(level 3b).
ul6PaddedFrameWidth

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary 7

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

This item is the extended and padded frame width.
In the decoder, if the actual picture size if not 16 multiple, the decoding frame size will be
extended to 16 multiple integers. And then it will be padded by a 16 pixel band for
accelerating the decoding, see Figure 1: Storage format and pointers for one padded output
frame.
ul6PaddedFrameHeight
This item is the extended and padded frame height
ul6ActFrameWidth
This item is the actual frame width that is indicated in the stream header
ul6ActFrameHeight
This item is the actual frame height that is indicated in the stream header
ul6LeftOffset
Since the exported frame buffer is extended and padded, it is need to be cropped when
display. This item indicate the cropping origin coordinate x
ul6TopOffset
This item indicate the cropping origin coordinate y

2.1.7 sMpeg4DecYCbCrBuf

This Data structure encapsulates the decoded YCbCr buffer.
typedef struct

unsigned char *pu8YBuf; /*1< Y Buf must be 4 bytes aligned*/
unsigned char *pu8UBuf; /*1< U Buf must be 4 bytes aligned*/
unsigned char *pu8VBuf; /*1< V Buf must be 4 bytes aligned*/

S32 s32YBuflLength; /*size must be padded_width x padded_height, maybe need not this item*/
S32 s32UBuflLength; /*size must be padded_width x padded_height/4, maybe need not this item*/
S32 s32VBuflLength; /*size must be padded_width x padded_height/4, maybe need not this item*/
void *pUsrTag [*a Tag that may be used by App. App can use this tag to easily manage the buffers.
It’s App implementation dependent, decoder will not use or change this tag,
App can ignore this tag also.*/
} sMpeg4DecYCbCrBuffer;

Since the MPEG4 ASP decoder uses CDB scheme (see section 2.1.9), the output format will only
be the padded YUV picture. Three pointers are used to present YUV plans respectively to allow the
flexibility. The Y,U,V buffer should be continuous for the current version.
Description of structure sMpeg4DecYCbCrBuffer
pu8YBuf

pointer to the Y plan of the padded decode buffer
pu8UBuf

pointer to the U plan of the padded decode buffer
pu8VBuf

pointer to the U plan of the padded decode buffer
s32YBufLength

the size of Y plan of the padded decode buffer. It must be padded_width x padded_height
s32UBufLength

the size of U plan of the padded decode buffer. It must be padded_width x padded_height/4
S32VBuflLength

the size of V plan of the padded decode buffer. It must be padded_width x padded_height/4

pUsrTag

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 8

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

This field is reserved for the application use. How to use is up to the application. For
example, the application can use this tag to mark the frame buffer. If the application doesn’t

need to use it, it can simply ignore this tag.

v

« u16xsize
£
pu8YBuf T > x
16
——pu8YBuf act v
Padded
height
416> Y frame 416>
*
16
——pu8UBuf > 5 4
—pu8UBuf act > ¥
481 Cb frame <8
0 ,
pu8VBuf——» &
St Cr frame 8y
§
4—Uulbxsize———»

Figure 1: Storage format and pointers for one padded output frame
In the above diagram, the value 16 vertically and horizontally specifies the pad.

In case of YUV padded output format, to calculate the pointer to the actual data the following
relations can be used:

pu8YBuf _act = pu8YBuf + ((16*ul6xsize) + 16)
pu8UBuUf _act = pu8UBuUf + ((8*ul6cxsize) + 8)

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 9

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

Note: The padded height calculation is based on the assumption that Y buffer is followed by Ch
buffer.

2.1.8 sMpeg4DecAppCap

This structure can be used to facilitate the decoder to refine configuration according to the
application/platform’s setting. Currently the memory capacity is included. When the application
query the initialization info from the decoder, it will tells the decoder how much fast memory and
slow memory that the application can allocate for decoder. By this the decoder can post feasible

memory requirement.
typedef struct

S32 s32MaxFastMem;
S32 s32MaxSlowMem;
} sMpeg4DecAppCap;

Description of structure sMpeg4DecAppCap

s32MaxFastMem
The maximum size of fast memory (in bytes) that the application can allocate for the
decoder, -1 for unrestricted

s32MaxSlowMem
The maximum size of slow memory (in bytes) that the application can allocate for the
decoder, -1 for unrestricted

2.1.9 sMpeg4DecFrameManager

This decoder uses a Configurable Decoding Buffer (CDB) mechanism to deal with the frame
buffers. This CDB mechanism means that the frame buffer which would be decoded into is
appointed by the application before decoding every frame.

By adopting this scheme, the application would manage all frame buffers and thus enable much
more flexibility for system level design. It is up to the application’s decision if copying the decoded
frame buffer into display domain or directly rendering it. The CBD mechanism is encapsulated by a
pair of callback functions which should be implemented by the application.

In brief the decoder will use one callback functions to ask a decoding buffer before decoding one
frame and might use another callback function to notify the application that the buffer provided
cannot be used because of some reasons, for example, this frame contains a reference frame.
Additional callback function is used to notify the application that the frame buffer can be reused.

In order to clarify the concept and simplify the API, these 3 callback functions are grouped into a
structure named FrameManager. The prototype of these 3 callback functions are described in

section (section 2.1.10 and 2.1.11)
typedef struct _sMpeg4DecFrameManager

cbGetOneFrameBuffer GetterBuffer;

cbRejectOneFrameBuffer RejectorBuffer;

cbReleaseOneFrameBuffer ReleaseBuffer;

void* pvAppContext
}sMpeg4DecFrameManager ;

Description of structure FrameManager
GetterBuffer

The callback functions for getting frame buffers
RejectorBuffer

The callback functions for rejecting frame buffers
ReleaseBuffer

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 10

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

The callback function is used to notify the application the decoder will not use this buffer.
pvAppContext

The application context that set by the application and must be passed back to the

application when getting or rejecting buffers.

2.1.10 Callback functions for getting frame buffers

The callback functions used for getting frame buffers is defined below; it will get one frame buffer
for decoder. This callback function is implemented by the the application.
Prototype:
typedef sMpeg4DecYCbCrBuffer * (*cbGetOneFrameBuffer)(void* pvAppContext);
Arguments:
pvAppContext the App context that is registered with the callback.

Return value:

It must be a frame buffer with padded picture size (section 2.1.6 and 2.1.7), the pointers of YUV
plans must be 4 bytes aligned. When the application can’t provide frame buffer anymore, it can
return NULL, and decoder will stop decoding and return E_MPEG4D_NO_FRAME_BUFFER.

2.1.11 Callback functions for rejecting frame buffers

It is possible that the gotten frame buffer for decoding the current frame still stored the reference
data so the decoder has to reject the buffer. After the rejection by calling this callback function, the
decoder will invoke chGetOneFrameBuffer to ask for frame buffer again.

A rejected buffer should not be provided to decode (via cbGetOneFrameBuffer) immediately.

If the stream do not has B-Frame (such as MPEG4 SP), the rejected buffer must not be provided to
decoder again in the next invoking of cbGetOneFrameBuffer, if the Stream has B-Frame, it must
wait 2 times.

Prototype:
typedef void (*cbRejectOneFrameBuffer)(sMpeg4DecYCbCrBuffer * mem_ptr, void*
pvAppContext) ;

Arguments:
mem_ptr A rejected frame buffer

pvAppContext The App context the registered.

Return value:
None

2.1.12 Callback functions for release frame buffers

It is used to release one frame buffer. It means the decoder notify the application this frame buffer
don’t need occupied as a reference frame or for post process.

Prototype:
typedef void (*cbReleaseOneFrameBuffer) (sMpeg4DecYCbCrBuffer * mem_ptr, void*
pvAppContext) ;

Arguments:
mem_ptr A released frame buffer

pvAppContext The App context the registered.

Return value:

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 11

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

None

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 12

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

2.2 Enumerations and Typedefs
2.2.1 Library API Return codes

This enum holds the return types of the APIs.

typedef enum

/* Successfull return values */

E_MPEG4D_SUCCESS = 0, /* Success */

E_MPEG4D_NO_OUTPUT, /* decoded a frame but didn't finish, or it's NULL frame */
E_MPEGAD_FRAME_SKIPPED /* skipped this frame*/

/* Successful return with a warning, decoding can continue */

/* Recoverable error return, correct the situation and continue */
E_MPEGA4D_NOT_ENOUGH_BITS=31, /* Not enough bits are provided */

E_MPEG4D_OUT_OF_MEMORY, /* Out of Memory */
E_MPEG4D_WRONG_ALIGNMENT, /* Incorrect Memory Alignment */
E_MPEG4D_SIZE_CHANGED, /* Image size changed */
E_MPEG4D_INVALID_ARGUMENTS, /* APl arguments are invalid */
E_MPEG4D_NO_HEADER_INFO, /*no header in the stream when start to decode*/
/* irrecoverable error type */

E_MPEG4D_ERROR_STREAM=51, /* Errored Bitstream */
E_MPEGA4D_FAILURE, /* Failure */

E_MPEG4D_UNSUPPORTED, /* Unsupported Format */
E_MPEG4D_NO_FRAME_BUFFER /* decoder can’t get frame buffer */

} eMpeg4DecRetType;

2.2.2 Decoding Scheme

Decoder provides a way for the application to speed up the decoding process by skipping some non

key frame.

/* For parameters setting and getting */
typedef enum _eMPEG4DParameter

E_MPEG4 PARA SKIP_B_FRAME=0,
E_MPEG4_PARA_SKIP_BNP_FRAME
} eMPEG4DParameter;

E_MPEG4 PARA SKIP_ B FRAME
In this mode, decoder will skip all B frames and return with
E_MPEG4D_FRAME_SKIPPED.

E_MPEG4_PARA_SKIP_BNP_FRAME
In this mode, decoder will skip all frames until find the next | frame.

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 13

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

2.3 Application Programmer Interface Functions

2.3.1 Query Initialization information

The application uses this function to query the initialization info such as memory requirement and
minimal decoder buffer number of the decoder for a specific stream. This function would return the
initialization info for the decoder with being fed with the stream header. The decoder will parse the
input bit stream to determine the type of video content, and count the memory requirement depends
on the parsed info.

The application will use these information to allocate the requested memory block (chunks) by
setting the pointers of sFastMemBIks and sSlowMemBlks in sMpeg4Declnitinfo.sMemInfo structure.
And the application need to use the s32MinFrameBufferCount to prepare the frame manager.

Prototype:

eMpeg4DecRetType eMPEG4DQuerylnitinfo(sMpeg4Declnitinfo *psinitinfo,
unsigned char *pu8BitBuffer,
signed long int s32NumBytes,
sMpeg4DecAppCap *AppCap) ;

Arguments:
e pslnitinfo [out] pointer to the initialization info
e pu8BitBuffer [in] pointer to the bitstream buffer, the input data must be 4 byte
aligned. And the buffer size should be multiple of 4.
e 532NumBytes [in] length of the input buffer
e pAPPCap [in] max fast and slow memory that the application can provide

Return value:
eMpeg4DecRetType Tells whether this function executed successfully or not.
Enumeration is described in the above section. Return values are —

E_MPEG4D_SUCCESS Function successful

E MPEG4D_INVALID _ARGUMENTS API arguments are invalid

E MPEG4D_NO_HEADER_INFO no header in the input stream

E MEPG4D_ERROR_STREAM detected error in the input stream
E_MPEG4D_NOT_ENOUGH_BITS Input data is not enough to decoder headers
E_MPEG4D_WRONG_ALIGNMENT input data alignment error, must be 4 bytes aligned
E MPEG4D_UNSUPPORTED unsupported Profile/level/parameter

2.3.2 Create a Decoder instance

After getting the initial information and allocating memory for the decoder, the application can
create the decoder instance. sMpeg4Declnitinfo.sStreaminfo should be the same as what the
application get by invoking eMPEG4DQuerylnitInfo.

A void pointer will be output as the decoder handle.

Prototype:
eMpeg4DecRetType eMPEG4ADCreate (sMpeg4Declnitlnfo* psinitinfo, sMpeg4DecFrameManager*
pFrameManager, MPEG4DHandle* phMp4DecHandle);

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 14

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

Arguments:
e psinitinfo [in] Initialization info such as allocated memory.
e pFrameManager [in] a pointer to a frame manager which is used to get and reject
buffer.
e phMp4DecHandle [out] pointer of the created decoder handle

Return value:
eMpeg4DecRetType Tells whether decoder has been successfully created or not.
Enumeration is described in the above section. Return values are —

E MPEG4D_SUCCESS Function successful.
E_MPEGA4D_INVALID_ARGUMENTS API arguments are invalid
E MPEG4D_OUT_OF_MEMORY the application did not provide enough memory

2.3.3 Decode Frame

eMPEG4DdecodeFrame is the main decoder function which should be called for decoding each
frame.

The input to this function is bitstream for an encoded frame and size of the encoded stream. The
input data address should be 4 Byte aligned.

The input data must at least include one frame or a header such as VOS, VO, VOL.

At the first invoking of this function, the application should feed data which include at least the
stream header such as VOS, VO, VOL.

After decoding, how many input data is consumed will be return by the 3" argument. If the input
buffer contains more than one frame, this function should be invoked again with remained data.
Buffer requirement is the same as the previous call.

Prototype:
EXTERN eMpeg4DecRetType eMPEG4DDecodeFrame (MPEG4DHandle hMp4DecHandle,
void *pvBSBuf,
long *s32NumBytes);

Arguments:

e hMp4DecHandle [in] Decoder handle.

e pvBSBuf [in]Stream data buffer for an encoded MPEG4-SP video frame,
the address of pvBSBuf point to should be 4bytes alignment.
And the buffer size should be multiple of 4.

e 532NumBytes [infout] Length of the stream data buffer in number of bytes.

Decoder will also use this argument as an output to inform the
application how much data are consumed.

Return value:
eMpeg4DecRetType Tells whether frames were decoded successfully or not.
Enumeration is described in the above section. Return values are —

E MPEG4D_SUCCESS One frame is successfully decoded.
E MPEG4D_NO_OUTPUT at the first invoking, only decoded a header

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 15

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

E MPEGA4D_SIZE_CHANGED decoded a new header and detected that in the new
header frame size is changed, App need to restart
the decoding process

E_MPEG4D_FRAME_SKIPPED a frame is skipped, need not to get frame

E MPEG4D_INVALID_ARGUMENTS API arguments are invalid

E_MPEG4D_NO_HEADER_INFO no header in the stream when start to decode

E MPEG4D_NOT_ENOUGH_BITS Input data is not enough for decoding a frame

E MPEG4D_WRONG_ALIGNMENT input data alignment error, should be 4 bytes
aligned

E_MEPG4D_ERROR_STREAM detected unconcealable error in the input stream

E MPEG4D_NO_FRAME_BUFFER decoder can’t get frame buffer

E_ MPEG4D_UNSUPPORTED unsupported Profile/level/parameter

2.3.4 Get output frame

After successfully decoding one frame, the application should call eMPEG4DGetOutputFrame to
get the frame to be displayed.

If *ppsOutBuffer is set to NULL, it means the decoder does not have proper frame be exported.
The cropping work will be carried out in the application’s scope.

This API would be called when the following APIs notify that a frame has been successfully
decoded.

e eMPEG4DDecodeFrame
Since the decode order and display order might be different (for the ASP), the decoder may hold
more than one decoded frame inside the decoder. Under some circumstance such as the end of
decoding or seeking the stream, the application might need to get the frame several times. At this
time, the application needs to call function eMPEG4DFIlushFrame to flush the last frame. Detailed
flush procedure is described in section 3.6 .

Prototype:
eMpeg4DecRetType eMPEG4DGetOutputFrame (MPEG4DHandle hMp4DecHandle,
sMpeg4DecYCbCrBuffer** ppsOutBuffer);

Arguments:
e pMp4DecHandle [in] Decoder object handle
e ppsOutBuffer [out] output argument to record the decoded picture

Return value:
eMpeg4DecRetType Tells whether this function executed successfully or not.
Enumeration is described in the above section. Return values are —

E MPEG4D_SUCCESS Function successful.
E MPEGA4D_INVALID_ARGUMENTS API arguments are invalid
E_MPEG4D_FAILURE Error

2.3.5 Flush one frame
Flush one frame to avoid the frame was reserved by decoder.

Prototype:
eMpeg4DecRetType eMPEG4DFlushFrame (MPEG4DHandle hMp4DecHandle);

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 16

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

Arguments:

e pMp4DecHandle [in] Handle of the Decoder that need to be deleted.

Return value:

eMpeg4DecRetType Tells whether this function executed successfully or not.
Enumeration is described in the above section. Return values are —

E MPEG4D_SUCCESS Function successful.

E_MPEG4D_FAILURE Error

2.3.6 Set Parameter

This function sets some indications to decoder to configure the additional features of the decoder.
The additional features skip B frame, skip B and P frame.
These configurations can be set and reset at anytime.

e For skip B and P frame setting, the decoder will record this setting and decode | frame only.
The application may reset this setting, it is, resume from skpping. Because the P frame
might be used as the reference frame and if it has been skipped, the following B frame
would not be decoded correctly. So, the decoder will still skip the B and P frame until
meeting an | frame.

Prototype:

eMpeg4DecRetType eMPEG4DSetParameter (MPEG4DHandle hMp4DecHandle, eMPEG4DParameter
eParaName, void * u32ParaValue)

Arguments:
e pMp4DecHandle

e eParaName

[in] Decoder object handle
[in] the name of the parameters

e u32ParaValue [in/out] the value of the parameters or the return value

The acceptable name and value pairs:

ePara Name

u32Para Value

E_MPEG4_PARA_SKIP_B_FRAME

0: do not skip B frame(default value)
1: skip B frame

E_MPEG4_PARA_SKIP_BNP_FRAME

0: do not skip B or P frame(default value)
1: skip B and P frame

typedef enum _eMPEG4DParameter

E_MPEGA_PARA_SKIP_B_FRAME=0,

E_MPEGA PARA_SKIP_BNP_FRAME
} eMPEG4DParameter;

Return value:
eMpeg4DecRetType

Tells whether this function executed successfully or not.

Enumeration is described in the above section. Return values are —

E_MPEG4D_SUCCESS
E_MPEG4D_FAILURE
E_MPEGA4D_INVALID_ARGUMENTS

© Freescale Semiconductor, Inc. 2009

Function successful.
Error
API arguments are invalid

Freescale Confidential Proprietary e 17

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

2.3.7 Get Parameter

This function is used for querying the current configuration of the decoder.
Just like the eMPEG4DSetParameter (section 2.3.6), this function takes the parameter names from
the enumeration eMPEG4DParameter.

Prototype:

eMpeg4DecRetType eMPEG4DGetParameter (MPEG4DHandle hMp4DecHandle, eMPEG4DParameter
eParaName, U32* pu32ParaValue)

Arguments:
e pMp4DecHandle [in] Decoder object handle
e eParaName [in] the name of the parameters
e pu32ParaValue [out] the value of the parameters

Return value:
eMpeg4DecRetType Tells whether this function executed successfully or not.
Enumeration is described in the above section. Return values are —

E_MPEG4D_SUCCESS Function successful.
E_MPEG4D_FAILURE Error
E_MPEG4D_INVALID_ARGUMENTS API arguments are invalid

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary o 18

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

3 Decoder Usage

3.1 Initialization

T
I
step 1:eMPEG4DQuerylnitInfo(Bitstream) :

- Return init info /,,—U

App Decoder FrameMng
T
|
|
<

L
|
|

L

I
|
I
step2: Allocate memory for decoder :

step3: eMPEG4DCreate(with the allocated memory)
r |- I.
<o return the decoder handle /U

L

siep4: InitFrameMngr (Stream info such as frame size, minimal frame numbef)

| »
: BD prepare frame buffers
|
- step5: Set FrameMngr ['| !
» I
d |
I
L I

As the above figure illustrated, there are 5 steps for initialization of decoder, of cause, the step 4
which is red colored is out of decoder’s scope, and the application may have its own decision on
this step.

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 19

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

3.2 Frame Decode

Decoder FrameMnagr

E

decodeFrame(decoderHandle,Bitstream)

; |
| I
| I
| I
| I
AL

GetFrame

Check the buffer

Reject and Get Frame again
L e e — e — _’

Return and inform decoding finished > decode to the frame

eMPEG4DGetOutputFrame

|
| T
|
|

As the above figure illustrated, when decoding, decoder may invoke Frame Manager many times to
get acceptable buffers. The Frame Manager should hold more than 3 buffers at least for
MPEG4 ASP decoder.

3.3 Finish

Decoder ErameMnar

Free Memory |::|

|

|
Delete eMPEG4 Decoder Object

|

Release FrameMngr

1

e

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 20

Application Programmers Interface for MPEG4 ASP Decoder

09-7428-API-ZCH70 1.1

As shown in figure above, the finish is simple, application free the memory block which is
allocated in the initialization step3, and maybe ask Frame manager to release frame buffers

3.4 Use skip B Frame feature

App Decoder
i i
| |
| 1. Querying initialization info and Createing decoder are already done
| 2. Some frames may already be decoded :
| |
| T
! eMPEG4DSetParameter(skip B frame =1) !
decodeFrame(decoderHandle,Bitstream)
If not a B-Frame =
return frame skiped if its a B frame L
Kl === =] s
L~ GetFrame
> Check the buffer
Reject and Get Frame again
_____________________________________ ._’
Return and inform decoding finished > decode to the frame with error concealment
e ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
eMPEG4DGetOutputFrame

|
1
|
! If APP want to stop skip B-Frame
|
|
|

eMPEG4DSetParameter(skip B frame =0)

As shown in the figure above, using skip B-Frame feature can be performed by switching the
related parameter via API function eMPEG4DSetParameter.
This figure illustrated frame decoding case, the packet decoding case is just the same.

3.5Use skip B and P Frame feature

As shown in figure below, using skip B&P-Frame feature can be performed by switching the
related parameter via API function eMPEGA4DSetParameter.
This figure illustrated frame decoding case, the packet decoding case is just the same.

© Freescale Semiconductor, Inc. 2009

Freescale Confidential Proprietary e 21

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.1

|

T
1. Querying initialization info and Createing decod‘er are already done
2. Some frames may already be decoded |

App Decoder FrameMngr
i
|
|
|
|
|
|
|
|
|

|
|
eMPEG4DSetParameter(skip B&P frame =1) }
1

decodeFrame(decoderHandle,Bitstream)

|
|
I
I
|
|
|
I
|
|
|
!
|
If not a B or P-Frame =h

return frame skiped if its a B or P frame

Koo m oo e

- GetFrame

b

> Check the buffer

Reject and Get Frame again
0_,___-4___._f4_,_._,_7____._._’

Return and inform decoding finished > decode to the frame with error concealment

I
|
eMPEGA4DGetOutputFrame i
|

|

|

|

|

|

|

|

rd

If APP want to stop skip B&P-Frame

eMPEG4DSetParameter(skip B&P frame =0)

Decoder will keep skip B&P until meet a | frame

really turn off the skip B&P when meat a | frame

3.6 Use flush out feature

As shown in figure below, using flush out feature can be performed by via API function
eMPEG4DFIlushFrame.

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 22

Application Programmers Interface for MPEG4 ASP Decoder

App

Decoder

09-7428-API-ZCH70 1.1

Querying initialization info and Createing decoder are already done

|

1

1.

} 2. Some frames may already be decoded
|

| eMPEG4DFlushFrame
1

eMPEG4DGetOutputFrame

© Freescale Semiconductor, Inc. 2009

> turn off the flush out setting automatically

Freescale Confidential Proprietary e 23

