Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

- o 08-6369-SIS-ZCH66

P>) 31-MAR-2008

= ~“ freescale i1
semiconductor '

Application Programmers
Interface for WMV9 Decoder

ABSTRACT:

Application Programmers Interface WMV9 Decoder
KEYWORDS:

Multimedia codecs, WMV9, Windows Media Video
APPROVED:

Wang Zening

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary o 1

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

Revision History

VERSION DATE AUTHOR CHANGE DESCRIPTION

0.1 04-Nov-2004 Debashis Sarkar Initial Draft

0.2 13-Dec-2004 Debashis Sarkar Updated after internal
discussions

0.3 16-Dec-2004 Debashis Sarkar Updated after review
comments

0.4 29-Jan-2005 Debashis Sarkar Updated after PCS review
comments

0.5 06-May-2005 Anurag Goel Updated performance numbers

1.0 26-May-2005 Prachi Bhatkar Updated performance numbers

2.0 06-Feb-2006 Lauren Post Using new format

2.1 31-Mar-2006 Prachi Updated

2.2 11-Jan-2007 Abhishek Updated the APIs to provide
Padded or Non-Padded data to
the application

2.3 22-May-2007 Anirudh R Added new API and updated
return parameter for Key frame
seek.

3.0 07-Nov-2007 Ding Qiang Add Direct Rendering module.

3.1 31-Mar-2008 Ellick Chen Updated Direct Rendering API

© Freescale Semiconductor, Inc. 2008

Freescale Confidential Proprietary o 2

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

Table

a1 00 141 T] o TSR
11 PUIDOSE ...ttt
O oo oL TR TP PP UURTUPRURN
IR B AW o[1= o (ot I L= Yo] o] £ o] o SRS
1.4 B C] T =] T S
141 Y- T P LSS
1.4.2 RETEIBINCES ...ttt sttt ettt ettt e st sbeeneeseeeneas
1.4.3 Freescale Multimedia REFEIENCESccoiiiiiiiiiieies s
15 Definitions, Acronyms, and ADBreviations.........ccccceveviiiiiiieie s
1.6 DOCUMENT LOCALION ...ttt et sttt sttt neeneeenes
N e B = ot o] (o] 4 TP S PP UR PRSP
2.1 DAta STTUCTUIES ...ttt ettt sb e et b e e sbe e sbeesbeesnbeanneas
2.1.1 BaSIC Jata LY PES ... veivieiieciece ettt re e
SWIMVODECODJECITYPE ...ttt bbbttt bt
SWMVIDECMEMAIIOCINTOTYPE ...ttt enes
SWMVIDECMEMBIOCKTYPE ...ttt sttt ettt ettt sre et et e sresreenes
SWMVODECPAIAMSTYPE ...ttt bbbt bbb bt e b nr b enes
SWMVIDECY COCIBUTEITYE ..ottt sttt sttt e st seeeeeenes
2.2 ENUMErations aNd MACIOScoviiiiieieieeie ettt sttt sbe s e eneas 11
2.2.1 Library API FEtUIN COUBScviiiiieie et 11
2.2.2 MEMOFY alIGNMENT ...t neeenes 11
2.2.3 VL@ 1 1SS 12
2.2.4 COMPIESSION TYPES ©.vviveeiiiiecie et te et te ettt ste et e e et e s teeseesbeareesbesaeessenresneens 12
2.25 Frame Manager tYPES.......c.uiieereerieiri ittt 12
2.2.6 OUEPUE FOIMIAL ...ttt snne s 13
2.2.7 Y T=T 0 g0 Y 1Y/ 0 LT PR 13
2.2.8 BUFTEI REIEASEN ... et sreenes 14
2.2.9 2 TN =T 1= (=] SR 14
2 O = V1§ T gl =] (= od (=T PSP 14
2.2.11 BUFFEr MANAGET ...ttt ne
2.3 Application programmer interface fUNCLIONS...........cccoriiiiiiiiiii e 15
2.3.1 L@ U 1= oV 011=T o] 2SS 15
2.3.2 INTEATIZALION ... 15
2.3.3 Enable SKip 10 NEXt I MOUEccooiiiiiiiiieree e 16
2.34 [cToT o (=3 1 = o 1 SR 16
2.3.5 Gt QULPUL TrAME....ec et sre e s esnaesnee s 16
2.3.6 e =TT Tt oo [T SO 17
2.3.7 Input buffer callback INTEITACEccooiiiiie e 17
2.3.8 =Y o100 N [o1 T SR 18
2.3.9 WMVODSEtBUFFENIMENAGETeivveiecieeie ettt 19
2.3.10 eWMVIDSetAdditionalCallbaCkFUNCLioN..........cccooveviiiiiieie e 20
3 EXaMPIE TIDIary USBQEooiiieieieeieee ettt sttt e sneeneenneneeenes 21

of Contents

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 3

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

Introduction

This document describes the application programmer’s interface of WMV9.0 video decoder library
and its usage. The interface assumes that the input is not a bare WMV9 video bit stream, and
relevant information from ASF format is available with the application.

1.1 Purpose

This document gives the application programmer’s interface to WMV9 decoder library. End of the
document contains an example application written using these APIs.

1.2 Scope

This document does not detail the implementation of this decoder. It only explains the functions
and data structures exposed for the application developer to use the decoder library.

1.3 Audience Description

The reader is expected to have basic understanding of video processing and windows media video
coding standard.

1.4 References

1.4.1 Standards

e WMV Version 9.0, Windows Media Video V9 Decoding Specification, revision 87
o WMT Version 9.0, Functional Specification, Recommended Media Decoding — rev 8.1.

1.4.2 References

e Arm codec coding guidelines

e Advanced System format (ASF) Specification, Revision 01.20.02, Microsoft Corporation,
June 2004

1.4.3 Freescale Multimedia References

WMV9 Decoder Requirements Book - wmv9_dec_regb.doc
WMV9 Decoder Test Plan - wmv9_dec_test plan.doc

WMV9 Decoder Release notes - wmv9_dec_release_notes.doc
WMV9 Decoder Test Results —wmv9_dec_test results.doc
WMV9 Decoder Interface Header — wmv9mp_dec_api.h
WMV9 Decoder Application Code — wmv9_testapp.c

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary o 4

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

1.5 Definitions, Acronyms, and Abbreviations

TERM/ACRONYM DEFINITION

AVC Advanced Video Coding

API Application Programming Interface
ARM Advanced RISC Machine

ASF Advanced System Format,

FSL Freescale

ISO International Standards Organization
ITU International Telecommunication Union
MPEG Moving Pictures Expert Group

NAL Network Abstraction Layer

RVDS RealView Development Suite

SP Simple Profile

RVDS RealView Development Suite

TBD To Be Determined

UNIX Linux PC x/86 C-reference binaries
WMV Windows Media Video

1.6 Document Location

docs/wmv9mp_dec

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary 5

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

2 API Description

This section describes the data structures, enumerations and macros used in the WMV9 decoder
library interface.

2.1 Data structures

This section describes the data structures used in the decoder interface. The basic data type
definitions are given in section .

Basic data types
These are the typedefs for the basic data types.

typedef void WMV9D_Void ;
typedef int WMVSD_S32 ;
typedef unsigned int WMVOD_U32 ;
typedef short int WMVOD_S16 ;
typedef short unsigned int WMVSD _Ulé6 ;
typedef char WMV9D S8 ;
typedef unsigned char WMV9D U8 ;
sWmv9DecObjectType

This is the main data structure which should be passed to all the decoder functions. The definition
of the structure is given below.

typedef struct

sWmv9DecMemAllocInfoType sMemInfo;
sWmv9DecParamsType sDecParam;
WMV9D_Void *pviWmv90bj ;
WMV9D Void *pvBitBuffer;
WMVSD_Void *pvAppContext;
FpWmv9DecReadCbkType pfCbkBuffRead;
WMV9D FrameManager frameManager;

} sWmv9DecObjectType;

Description of structure swmv9DecObjectType
sMemlnfo
This is memory information structure. This is further described later.
sDecParam
The output of the decoder is encapsulated in this structure. This is further described later.
pvWmv9Obj
This is an internal video object context for the decoder and application should not change
this.

pvBitBuffer
This buffer is used for holding the bit stream data inside the library.

pvAppContext
This space is provided for the application to keep its context and the decoder does not

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 6

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

modify it. It is passed in the call back function to get the bit stream data.

pfCbkBuffRead
Function to be used for reading the bit stream data. For more information see section 2.3.7.

frameManager
Frame buffer manager, it will be set by the framework.

Buffer Manager

For clarifying the concept and simplifying the API, we group the 2 function pointer we described
above into a structure named DR_BufferManager:

typedef struct WMV9D FrameManager

bufferGetter BfGetter;
bufferRejecter BfRejector;
JWMV9D FrameManager;

sWmv9DecMemAllocinfoType

This structure holds the memory block allocation information for decoder library. The decoder
memory requirements are given to the application when eWMV9DQuerymem is called. The decoder
specifies number of memory blocks needed by filling s32NumRegs in this structure. For each
memory block, all parameters are set in asMemBIks array based on decoder requirement.
Application shall allocate the memory required by looking at this structure before initializing the
decoder.

typedef struct

WMV9D S32 s32NumRegs;
sWmv9DecMemBlockType asMemBlks [WMV9D MAX NUM MEM REQS] ;
WMVOD S32 s32MinFrameBufferNum;

}sWmv9DecMemAllocInfoType;

Description of the structure sWwmv9DecMemAllocInfoType
s32NumReqgs
Number of memory blocks required. Decoder will set this to required value when
eWmv9DQuerymem function is called.
asMemBIks
Array of memory block structure. For each request defined in s32NumReqgs application
should allocate the memory. To see how this information can be used, please see
(Example library usage).
s32MinFrameBufferNum
The minimum frame buffer number, it is set when querying memory process.

WMVID_MAX_NUM_MEM_REQS is the maximum number of memory block requests the
decoder can make. WMV9D_MAX_NUM_MEM_REQS has been set to 256.

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 7

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

sWmv9DecMemBlockType

This describes the memory block requirement details such as size, type etc. The application shall
allocate memory depending on the requirement and set the pointer in the space provided. The
library uses the memory given by the application.

typedef struct

WMV9D_S32 s328ize;

WMV9D S32 s32MemType;
WMV9D_S32 s32Priority;
eWmv9DecMemAlignType eMemAlign;

WMV9D S32 s3201dSize;
WMV9D_S32 s32MaxSize;
WMV9D_Void *pvUnalignedBuffer;
WMV9D_Void *pvBuffer;

} sWmv9DecMemBlockType ;

Description of the structure swmvSpecMemBlockType

s32Size
The actual size of the memory required (populated by the decoder).

s32MemType
The type of memory needed. It can be one of slow/fast along with scratch/static memory.
Please see the section Memory types to get the possible type of values (populated by the
decoder).

s32Priority
It suggests the importance of this memory block. Higher the impact of the speed of this
memory on the decoder performance, lower will be the value (>0). Priorities are neither
unique nor continuous (populated by the decoder).

eMemAlign
Required alignment of the memory block. The values are defined in the Memory alignment

section.(populated by the decoder).

s320IdSize
Size of the block in the last allocation. It is useful only if the block is resized.

s32MaxSize
This gives the maximum size that can be requested for this type. This is fixed on compile
time, based on the maximum size supported. It is only useful if the application does not
want to reallocate memory.

pvUnalignedBuffer
This storage is provided to keep track of the unaligned buffer address (by the application).
This is not used by the decoder.

pvBuffer
This will be updated by the application based on the memory requirement. The decoder
assumes that it contains a valid value of a buffer for the required size, type and alignment.

sWmv9DecParamsType

This defines the data structure for the decoder parameters. This structure is used to exchange
multiple parameters between application and decoder.

typedef struct

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary o 8

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

sWmv9DecYCbCrBufferType sOutputBuffer;

eWmv9DecCompFmtType eCompressionFormat ;
WMV9D S32 s32FrameRate;

WMV9D S32 s32BitRate;

WMV9D Ulé6 ul6FrameWidth;
WMV9D Ulé6 ul6FrameHeight;
WMV9D U32 u32PrevFrameNum;
WMV9D U32 u32CurrFrameNum;
eWmv9DecVOPType eVopType;

} sWmv9DecParamsType ;

Description of the structure swmv9DecParamsType
sOutputBuffer
Decoded output is stored in this structure.
eCompressionFormat
Compression format used to encode the sequence. This is set by the application.
s32FrameRate
Frame rate of the bit stream to be decoded (if not known, set it to 0)
s32BitRate
Bit rate of the bit stream to be decoded (if not known, set to 0).
ul6FrameWidth
Width of the frame.
ul6FrameHeight
Height of the frame.
u32PrevFrameNum
Assumed frame number of the previous frame. This is used to calculate the current frame
number. For proper usage of this field, please see the Example library usage. This is set to
u32CurFrameNum after decoding a frame, so that the application need not set it, unless
there is a skip.
u32CurrFrameNum
Frame number of the current decoded frame, calculated from the u32PrevFrameNum, and
number of frames skipped in the encoder. For proper usage of this field, please see the
Example library usage.

eVopType
Type of the VOP of the last decoded frame.

sWmv9DecYCbCrBuferType

This structure encapsulates the YCbCr buffer, which stores the decoded frame in YUV 4:2:0
format, non-interleaved. The buffer addresses and row sizes shall be set by the decoder in
eWMv9DDecode function. The values can be changed after each call of ewmvopDecode function.
As the pointers point inside the decoder data structure, application shall not modify the pointers or
the content.

typedef struct

const WMV9D U8 *pu8YBuf;
const WMV9D_U8 *pu8CbBuf;
const WMV9D_ U8 *pu8CrBuf;
WMV9D S32 s32YRowSize;
WMV9D_S32 s32CbRowSize;
WMV9D S32 s32CrRowSize;

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 9

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

tVideoFormat WMC tOutputFormat;
} sWmv9DecYCbCrBufferType;

Description of the structure swmvSpecYCbCrBufferType

pu8YBuf
Buffer pointer to decoded frames Y data.

pu8CbBuf
Buffer pointer to decoded frames Cb data.

pu8CrBuf
Buffer pointer to decoded frames Cr data.
s32YRowsSize
Offset in bytes between start pixels of two consecutive rows of Y.
s32CbRowsSize
Offset in bytes between start pixels of two consecutive rows of Cb.
s32CrRowsSize
Offset in bytes between start pixels of two consecutive rows of Cr.
tOutputFormat
Specifies the format of output data (YUV_420)

< s32YRowSiz

v

pubYBuf-

+
24
v
Padded
height
€-24-»| Y frame H4-24-»
*
24
B — pubCbBuf » 2
A 4
12 Cb frame (2
-
12
pubCrBuf———p 1'2
F12+ Cr frame 112
12

«4——s32Cb/CrRowSize——»

Figure 1: Storage format and pointers for one padded output frame

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 10

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

2.2 Enumerations and macros
2.2.1 Library APl return codes
This enum holds the return types of the APIs.

typedef enum

/* Successfull return values */

E _WMV9D_SUCCESS = 0, /* Successful completion*/

/* Successful return with a warning, no action needs to be taken */
E WMV9D ERROR CONCEALED = 11, /* Error in the bit stream,
but concealed */

E_ WMV9D _ENDOF BITSTREAM, /* End of Bit Stream*/

E _WMV9D SKIPPED FRAME, /* The frame has been skipped */

/* Successful return with a warning, correct the situation and
continue */

E _WMVOD NOT ENOUGH BITS=31, /* Not enough bits are
provided */
E_WMV9D BAD MEMORY, /* Out of memory*/
E WMV9D WRONG ALIGNMENT, /* Incorrect memory alignment
*
/
E _WMV9D SIZE CHANGED, /* Image size changed*/
E _WMV9D NO OUTPUT, /* No output frame is
available *
E _WMV9D BROKEN FRAME, /* Should have more data in

this frame*/

/* irrecoverable error type, may need re-initialization to continue

*/
E_WMV9D CORRUPTED BITS=51, /* Error bit stream*/
E WMVSD FAILED, /* Failure*/
E WMV9D _UNSUPPORTED, /* Unsupported format*/
E_WMV9D NO KEYFRAME DECODED, /* first frame is not an I
frame */
E WMV9D SIZE NOT FOUND, /* Frame size not found in
bit stream*/
E _WMV9D NOT INITIALIZED, /* Decoder is not initialized
*/
E_WMV9D_ INVALID ARGUMENTS, /* Argument to the API is
invalid */
E _WMV9D SET CB OK, /*!< Decoder Register call
back OK */
E WMVSD SET CB_ FAIL /*!< Decoder Register call
back FAIL */
} eWmv9DecRetType;
2.2.2 Memory alignment
This enumeration defines the memory alignment type.
typedef enum
E WMV9D_ALIGN NONE = 0, /* buffer can start at any place */
E WMV9D ALIGN HALF WORD, /* start address's last bit has

to be 0 */

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary 11

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

E_ WMV9D ALIGN_ WORD, /* start address's last 2 bits
has to be 0 */
E _WMVSD ALIGN DWORD, /* address's last 3 bits has to
be 0 */
E _WMVOD ALIGN QWORD, /* address's last 4 bits has to
be 0 */
E_WMV9D ALIGN_OCTAWORD /* address's last 5 bits has to
be 0 */

} eWmv9DecMemAlignType;

2.2.3 VOP types

This enumeration describes the encoding type of the VOP last decoded.
typedef enum

E WMVSD INTRA VOP, /* Intra VOP or I-VOP*/
E _WMV9D INTER VOP, /* Inter VOP or P-VOP*/
E _WMVSD BIDIR VOP, /* Bidirectional VOP or B-VOP*/
E_WMV9D UNKNOWN_ VOP, /* Unknown, should not happen*/

} eWmv9DecVOPType ;

2.2.4 Compression types
The following enumeration is used to specify the compression type that is supported by the
decoder.

typedef enum

E_WMV9D_COMP_FMT WMV9,

E_WMV9D COMP_FMT WMV,

E_WMV9D_COMP_FMT WMV7,

E_WMV9D_COMP_FMT UNSUPPORTED
} eWmv9DecCompFmt Type;

To facilitate the conversion of ASF file compression type to the required enumeration, library also
provides a utility function to convert a string to the compression type.

eWmv9DecCompFmtType eWMV9DCompFormat (const WMV9D_U8* format);
It returns the compression format enumeration from the string used in the ASF file format.

2.2.5 Frame manager types
The following enumeration is used to specify the manager type that is supported by the decoder.

typedef enum
E_RELEASE FRAME =0,
E_REJECT FRAME,

E_GET FRAME
} eWmv9CallbackType;

add this to indicate additional callback function type .

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 12

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

2.2.6 Output Format

typedef enum

YUV 420=0,
YUV 420 PADDED,
uyvy wMv

} tVideoFormat WMC;

Specifies the format of the output data.

2.2.7 Memory types

The following defines specifies the memory types of the memory blocks requested by the decoder.
As various properties are combined in single variable, please use the macros provided to extract the
required value.

Speed of memory block
WMV9ID_SLOW_MEMORY, WMV9D_FAST_MEMORY

Usage of memory block over API calls
WMVID_STATIC_MEMORY,WMV9D_SCRATCH_MEMORY

Whether there is any size dependency, and if it is, whether we need to copy old data on resizing.
WMVIOD_SIZE_DEPENDENT, WMV9D_SIZE_CHANGED, WMV9D_COPY_AT_RESIZE

To specify whether it contains ouput data
WMVIOD_OUTPUT_MEMORY

The memory type will be a combination of these properties. Do not check the value directly, use the
macros defined bellow instead.

WMVOD IS FAST _MEMORY (memType) Returns non zero, if memory type is fast.
WMVOD_IS SLOW_MEMORY(memType) Returns non-zero, if memory type is slow.

WMVOD IS STATIC_MEMORY(memType) Returns non-zero, if memory type is static.
WMVOD_IS SCRATCH_MEMORY (memType) Returns non-zero, if memory type is scratch.

WMVOD_IS_SIZE_DEPENDENT_MEMORY (memType)
Returns non-zero, if buffer is frame size dependent.

WMVOD_IS_SIZE_CHANGED(memType) Returns non-zero, if buffer size needs to be
changed, since the last allocation happened.
WMVOD_COPY_AT_RESIZE(memType) Returns non-zero, if memory content has to be

copied when the buffer is resized.
WMVIOD IS OUTPUT_MEMORY (memType) Returns non-zero, if memory content is output
data.

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 13

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

2.2.8 Buffer Releaser

Since the Direct Rendering is adopted, the decoder will tell the APP that some frame buffers will
not be used as reference frame. A function which is implemented by the application (frame work)
will be used to release a frame buffer.

This function’s prototype is listed in the wmvOmp_dec_api.h:

Prototype:
typedef void (*bufferReleaser)(void*, void*);

Arguments:
e void

Return value:
e A frame buffer

2.2.9 Buffer getter

Since the Direct Rendering is adopted, the decoder will ask to get a new buffer for decoding. A
function which is implemented by the application (frame work) will be used to perform getting
frame buffer.

This function’s prototype is listed in the wmvOmp_dec_api.h:

Prototype:
typedef void* (*bufferCGetter)(void);

Arguments:
e void

Return value:
e A frame buffer

2.2.10 Buffer Rejecter

Since the Direct Rendering is adopted, the decoder will ask to get a new buffer for decoding.

It’s possible that the gotten frame buffer may be refused by the decoder. Decoder need to inform
the application (framework) that this frame is rejected.

A function which is implemented by the application (frame work) will be used to perform reject ion
of a frame buffer.

This function’s prototype is listed in the wmvOmp_dec_api.h:

Prototype:
typedef void (*bufferRejecter)(void*, void*);

Arguments:
o A rejected frame buffer

Return value:
e None

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 14

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

2.3 Application programmer interface functions

2.3.1 Query memory

This is the first function to be called by the application. This function returns the memory
requirement for the decoder. The decoder will populate psWmv90Obj->sMeminfo structure based on
width and height of the frame. The application shall use this information to allocate the requested
memory blocks and set the pointers of asMemBIlks in psWmv9Obj->sMeminfo structure to the
memory block of required size, type & alignment.

C prototype:

eWmv9DecRetType eWMV9DQuerymem (sWmv9DecObjectType *psWmv9Obj,
WMV9D_S32 s32Height,
WMV9D_S32 s32Width) ;

Arguments:

. psWmv9ODbj - Decoder object pointer

. s32Height - Height of the frame size of the sequence to be decoded
° s32Width - Width of the frame size of the sequence to be decoded

Return value:
eWmv9DecRetType Tells whether the decoder was successful to set the parameters needed
for memory allocation.
Return values are -
E WMV9D_SUCCESS - Function successful.
Other values - Error

2.3.2 Initialization

All initializations required for the decoder are done in eWMV9DInit. This function must be called
before main decoder functions are invoked. This function also parses the sequence header, and uses
the call back function to get the required data.

C prototype:
eWmv9DecRetType eWMVODInit (sWmv9DecObjectType *psWmv9Ob7j) ;

Arguments:
o psWmv9Obj - Decoder object pointer.

Return value:
eWmv9DecRetType Tells whether decoder has been successfully initialized or not.

Return values are -

E WMV9D_SUCCESS - Function successful.
Other values - Error

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 15

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

2.3.3 Enable Skip to Next | Mode

This API enables the “skip to next | mode’ in the decoder. Refer to Decode a frame

C prototype:
eWmv9DecRetType eWMV9DEnableSkipMode (sWmv9DecObjectType *psWmv9Obj) ;

Arguments:
o psWmv9Obj - Decoder object pointer.

Return value:
eWmv9DecRetType Tells whether frames were decoded successfully or not.
Return values are:

E_ WMV9D_SUCCESS - Function successful.

Other values - Error

2.3.4 Decode aframe

This is the frame decoding function. It decodes the WMV bit stream to generate one frame of
decoder output in every call. When running in ‘skip to next I mode’ the decoder skips all the non-
key frames until it finds a key frame, after which it decodes the key frame and disables the “skip to
next | mode’.

C prototype:
eWmv9DecRetType eWMV9DDecode (sWmv9DecObjectType *psWmv9Obj, 0
WMVOD_U32 u32FrameDataSize) ;

Arguments:
o psWmv9Obj - Decoder object pointer.
e u32FrameDataSize - Bit stream data size in bytes for this frame (or sequence header)

Return value:
eWmv9DecRetType Tells whether frames were decoded successfully or not.
Return values are:

E WMV9D_SUCCESS - Function successful.
E WMV9D_SKIPPED_FRAME - The frame has been skipped
Other values - Error

2.3.5 Get output frame
This API gives the recently decoded frame output. In case of YUV _420 output format,

o It copies decoded video frame (after removing padded data) into a buffer allocated by the
application.

e The pointers to the buffer allocated by the application must be populated on the structure
members of swmvoDecYCbCrBufferType (pu8YBuf, pu8CbBuf and pu8CrBuf).

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 16

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

In case of YUV_420_PADDED output format, this API sets the pointers pu8YBuf, pu8CbBuf and
pu8CrBuf to point to the padded video frame buffers. This will be helpful if the application can
handle removal of padded data using hardware.

C Prototype:
eWmv9DecRetType eWmv9DecGetOutputFrame (sWmv9DecObjectType *psWmv9Ob7j) ;

Arguments:
o psWmv9Obj - Decoder object pointer.

Return value:
eWmv9DecRetType Tells whether the output data is available.

Return values are -
E WMV9D_SUCCESS - Function successful.
Other values - Error

2.3.6 Free decoder

This is the decoder function to release any resources used by the decoder. It doesn’t free memory
that has been allocated by the application on behalf of the decoder.

Prototype:

eWmv9DecRetType eWMV9DFree (sWmv9DecObjectType *psWmv9Ob7j) ;
Arguments:

o psWmv9Obj - Decoder object pointer.

Return value:
eWmv9DecRetType - Tells whether memory was freed successfully or not.

Return values are -
E WMV9D_SUCCESS - Function successful.
Other values - Error

2.3.7 Input buffer callback interface

Input buffer callback function should be a synchronous function used by the decoder to read the
portion of bit stream from the application. This function is called by the decoder in ewmMvoDInit
and ewmMv9DDecode functions, when it needs the bit stream data. The decoder assumes that the
application knows the end of the bit stream data for the current frame, and data returned is for
current frame only. While initializing, only sequence header data should be returned.

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary 17

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

This function is not a part of the library and has to be implemented by the application, user of the
decoder library. Application developer has complete control on implementing this function based
on his/her system requirements. The name of the function given is only for illustration purpose, and
the application developer can name the function as he/she likes. The decoder cannot continue till
this function returns with the required data. For example usage, see section Example library usage.

C prototype:

int cbkWMV9BuffRead (int s32BufLen, unsigned char *pu8Buf, int
*bEndOfFrame, void * pvAppContext);

Arguments:

e s32BufLen Length of the buffer provided.

e pu8Buf Pointer to the buffer.

e DpEndOfFrame Set to 1, if no more data for the current frame (or sequence header) is
available.

o pvAppContext Caller context, as set while initializing the decoder. It can be used to

distinguish between calls from different decoding threads in multi-
threaded environment.

Return value:
Returns the size of the buffer copied else return -1.

Note:

The function cokWMV9BuUffRead is in application space and can have any name. The function
pointer in the sSWmv9DecObject structure has to be initialized to this function.
sWmv9DecObjectType.pfCbkBuffRead = chbkWMV9BuffRead

2.3.8 Debug logging

Debug logs for the decoder can be enabled by setting the debug levels appropriately. They are
described in debug.h file. The logs can be extracted with various debug level enabled depending on
the need. Here are the list of levels and its meaning. These settings are compilation time options.

Table 1 Different debug levels

DEBUG 1 Data that occurs once per bitstream
DEBUG 2 Data that occurs once per VOP
DEBUG 3 Data that occurs once per MB
DEBUG 4 Data that occurs once per block

The debug log interface functions are defined in the log_api.h file, which is supplied with the
library. The application should implement the specific logging functionality required, according to
the interface.

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 18

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

2.3.8.1 Initializing debug log module

Prototype
int DebugLogInit (void/* any parameter defined by the application*/);

2.3.8.2 Logging a data value

This function is used by the decoder to log a data value. Return value is ignored.

C prototype

int DebugLogData (short int msgid, void #*ptr, int size);

Arguments
e msgid Message id for the particular codec/data type.
o ptr Memory where the data is present.
® size Data size in bytes.

2.3.8.3 Logging a text message
This function is used to log a text message, similar to printf format. Return value is ignored.

C prototype

int DebugLogText (short int msgid, char *fmt, ...);
Arguments
e msgid Message id for the particular codec/message type.
o fmt Format of the message, similar to printf function.
o ... Any other arguments (possibly none) that the format specifies.

2.3.8.4 Closing debug logs
This function closes the debug logs. The function shall be called by the application after closing the
decoder.

C prototype
int DebugLogClose () ;

2.3.9 Set Buffer Manager

Set the Frame manager to decoder. It will be called after querying memory and before decode init.

C prototype
extern void WMV9DSetBufferManager (sWmv9DecObjectType *psWmv90bj,
WMVOD_FrameManager* manager);

Arguments
o psWmv9Obj WMV9 Decoder object
e manager Frame buffer manager

return value
null

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 19

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

2.3.10 Set Additional Callback Function

Set the Frame manager to decoder via callback function. It will be called after decode initialization.
At current version, only bufferReleaser need to be used via this callback function.

C prototype
extern eWmv9DecRetType eWMV9ODSetAdditionalCallbackFunction
(sWmv9ODecObjectType *psWmv90bj, eWmvOCallbackType funcType, void* cbFunc);

Arguments
o psWmv9Obj WMV9 Decoder object
o funcType Frame buffer manager type
e CbFunc Frame buffer manager function

Return value:
eWmv9DecRetType -Tells whether the callback function was registered successfully or not.

Return values are -

E_WMV9D SET CB_OK - Function successful.
E_WMV9D SET CB_FAIL - Error

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary 20

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

3 Example library usage

This example shows how to use the WMV9 decoder library. Here are the steps involved in a typical
usage.

Get the memory requirement

Allocate the memory as required by the decoder.

Initialize the decoder

Allocate memory as per the requirements.

While there are more frames, decode and display the decoded frames.
Close the decoder.

Free any memory allocated for the decoder and application.

NookrwdE

The encoded bit stream is fed through cokWMV9DBufRead function. Please note that the error

handling is not shown properly and the code may not compile as it is. Also, at few places only one
field of a structure is set, while the application needs to set all the fields.

/ portion of the application code /
sWmv9DecObject sWmv9DecObj ; /* instance of a decoder */

/* Call QueryMem to get the size and the type of the memory needed by
the decoder */
error = eWMV9DQuerymem (&sWmv9ODecObj, frameHeight, frameWidth);

/* Give memory to the decoder for the size, type and alignment
returned */
AllocateMemory (&sWmv9DecObj);

/* Set the call back function and app context, as Init uses these */
sWmv9DecObj . pFCbkWMVOBuffRead = cbkWMVODBufRead;

sWmv9ODecObj .pvAppContext = (void*)(&sWmv9DecObj); /* or anything you
need */

/* Initialize the decoder. */
error = eWMvVaDInit (&sWmv9DecObj);

/* Decode the bit stream and produce the outputs */
while (1) {

i T(SkiptoNextIVOP)

{
error= eWMV9DEnableSkipMode (psWmv90bj);

it (E_WMVOD_SUCCESS == error)
SkiptoNextlVOP = 0;

}

/* Decode one frame.*/

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 21

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

error = eWMV9DDecode (psWmv9ODecObj, s32NumBytes);
/* if success get the output*/
if (E_WMVOD_SUCCESS == error){
error = eWMV9DecGetOutputFrame(&psWmvODecObj);
}

if (error '= E WMVOD_SUCCESS) {
/* do the appropriate depending upon the return value */
}

else{
/* the current frame number is available at currFrameNum */

/* The output frame is available on the YCbCr buffer. Application
can access the buffer for post-processing (Filtering /7 colour
conversion / rotation / resizing). Make sure that the buffer is
not corrupted as this will probably be used by the next decode
call.

*/

const unsigned char* pu8RowPtr =
sWmv9DecObj . sDecParam.sOutputBuffer .pu8YBuf;
s32RowSize = sWmv9DecObj .sDecParam.sOutputBuffer.s32YRowSize;

for (row = 0; row < height; row++)

{
/* one row data from pu8RowPtr to pu8RowPtr + width */

pu8RowPtr += s32RowSize;

}
}

/* free the decoder */
error = eWMV9DFree(&sWmvODecObj);

FreeMemory (&sWmv9DecObj);

[FFFFRxFxExExE* End of the decoding a video bit stream ilakaie /

/* Tunction called by the decoder for reading the bitstream */
int cbkWMVODBufRead (int s32BufLen, unsigned char *pu8Buf, int
*bEndOfFrame, void *pvAppContext)

// Copy bit stream data to the buffer from the bit stream buffer to
decoder space

// Set the bEndOfFrame to be 1, if there is no more data for this
frame or sequence header.

// return the amount of data copied.
}

/* couple of helper function used in memory allocation */

void* AllocateFastMem (int s32NumBytes);

void* AllocateSlowMem (int s32NumBytes);

void* MemAllign(void* pvUnallignedBuf, eWmv9DecMemAlignType ememAlign);
void MemCopy(const void* pvSrc, void* pvDst, s32NumBytes);

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 22

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

void MemFree(void* pvBuffer);

/* Give memory to the decoder for the size, type and alignment returned
*/
void AllocateMemory (sWmv9DecObject *psObj)

sMemAl locInfo *psMemlnfo = &psObj->sMemInfo;

for (i = 0; 1 < psMemInfo->s32NumReqgs ; i++) {
sWmv9DecMemBlock* curBlk = psMemlnfo->asMemBlks + i;
memType = curBlk->type;
if (WMVOD_1S_SIZE_CHANGED(memType)) {

/* See 1T we need to allocate new memory buffer */
if (curBlk->size > 0)
{
/* allocate the memory fast */
if (WWVOD_IS FAST_ MEMORY(memType))
tempBuf = AllocateFastMem (curBlk->size);
else
tempBuf = AllocateSlowMem (curBlk->size);

/* Now align the memory for the requested alignment */
alignBuf = MemAlign (tempBuf, curBlk->eMemAlign);

} else
alignBuf = tempBuf = NULL;

/* if required copy the data from the old place */
it (curBlk->pvBuffer = NULL)

{
it (WMVOD_COPY_AT_RESIZE(memType))
MemCopy (curBlk->pvBuffer, alignBuf, smaller of two
sizes);
/* free the old buffer */
MemFree (currBlk->pvUnalignedBuffer);
}

/* Set the new buffer */
currBlk->pvUnalignedBuffer = tempBuf;
curBlk->pvBuffer = alignBuf;

} 7/* if current blocks size has been changed */
} /* for each valid entry in the array */

}

/* function to free the memory allocated for the decoder */
void FreeMemeory (sWmv9DecObject *psObj)

sMemAllocInfo *psMemInfo = &psObj->sMemlnfo;

for (i = 0; 1 < psMemInfo->s32NumReqgs ; i++) {

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 23

Application Programmers Interface for WMV9 Decoder 08-6369-SIS-ZCH66 3.1

sWmv9DecMemBlock* curBlk = psMemlnfo->asMemBlks + i;
if (curBlk->size > 0)
free (curBlk->pvUnalignedBuffer);

© Freescale Semiconductor, Inc. 2008 Freescale Confidential Proprietary e 24

	Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Audience Description
	1.4 References
	1.4.1 Standards
	1.4.2 References
	1.4.3 Freescale Multimedia References

	1.5 Definitions, Acronyms, and Abbreviations
	Document Location
	2 API Description
	2.1 Data structures
	Basic data types
	sWmv9DecObjectType
	Buffer Manager
	sWmv9DecMemAllocInfoType
	sWmv9DecMemBlockType
	sWmv9DecParamsType
	sWmv9DecYCbCrBuferType

	2.2 Enumerations and macros
	2.2.1 Library API return codes
	2.2.2 Memory alignment
	2.2.3 VOP types
	2.2.4 Compression types
	2.2.5 Frame manager types
	2.2.6 Output Format
	2.2.7 Memory types
	2.2.8 Buffer Releaser
	2.2.9 Buffer getter
	2.2.10 Buffer Rejecter

	2.3 Application programmer interface functions
	2.3.1 Query memory
	2.3.2 Initialization
	2.3.3 Enable Skip to Next I Mode
	2.3.4 Decode a frame
	2.3.5 Get output frame
	2.3.6 Free decoder
	2.3.7 Input buffer callback interface
	2.3.8 Debug logging
	2.3.8.1 Initializing debug log module
	2.3.8.2 Logging a data value
	2.3.8.3 Logging a text message
	2.3.8.4 Closing debug logs

	2.3.9 Set Buffer Manager
	2.3.10 Set Additional Callback Function

	3 Example library usage

